首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9368篇
  免费   1691篇
  国内免费   2214篇
测绘学   466篇
大气科学   1907篇
地球物理   2547篇
地质学   4764篇
海洋学   940篇
天文学   524篇
综合类   926篇
自然地理   1199篇
  2024年   52篇
  2023年   163篇
  2022年   417篇
  2021年   473篇
  2020年   418篇
  2019年   509篇
  2018年   566篇
  2017年   484篇
  2016年   569篇
  2015年   461篇
  2014年   604篇
  2013年   518篇
  2012年   485篇
  2011年   569篇
  2010年   540篇
  2009年   497篇
  2008年   457篇
  2007年   474篇
  2006年   354篇
  2005年   290篇
  2004年   281篇
  2003年   279篇
  2002年   292篇
  2001年   260篇
  2000年   303篇
  1999年   387篇
  1998年   332篇
  1997年   335篇
  1996年   278篇
  1995年   241篇
  1994年   288篇
  1993年   219篇
  1992年   167篇
  1991年   130篇
  1990年   105篇
  1989年   77篇
  1988年   98篇
  1987年   50篇
  1986年   45篇
  1985年   41篇
  1984年   36篇
  1983年   33篇
  1982年   35篇
  1981年   27篇
  1980年   7篇
  1979年   10篇
  1978年   5篇
  1975年   2篇
  1958年   7篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
151.
There are two types of lead–zinc ore bodies, i.e., sandstone-hosted ores (SHO) and limestone-hosted ores (LHO), in the Jinding giant sulfide deposit, Yunnan, SW China. Structural analysis suggests that thrust faults and dome structures are the major structural elements controlling lead–zinc mineralization. The two types of ore bodies are preserved in two thrust sheets in a three-layered structural profile in the framework of the Jinding dome structure. The SHO forms the cap of the dome and LHO bodies are concentrated beneath the SHO cap in the central part of the dome. Quartz, feldspar and calcite, and sphalerite, pyrite, and galena are the dominant mineral components in the sandstone-hosted lead–zinc ores. Quartz and feldspar occur as detrital clasts and are cemented by diagenetic calcite and epigenetic sulfides. The sulfide paragenetic sequence during SHO mineralization is from early pyrite to galena and late sphalerite. Galena occurs mostly in two types of cracks, i.e., crescent-style grain boundary cracks along quartz–pyrite, or rarely along pyrite–pyrite boundaries, and intragranular radial cracks in early pyrite grains surrounding quartz clasts. The radial cracks are more or less perpendicular to the quartz–pyrite grain boundaries and do not show any overall (whole rock) orientation pattern. Their distribution, morphological characteristics, and geometrical relationships with quartz and pyrite grains suggest the predominant role of grain-scale cracking. Thermal expansion cracking is one of the most important mechanisms for the generation of open spaces during galena mineralization. Cracking due to heating or cooling by infiltrating fluids resulted from upwelling fluid phases through fluid passes connecting the SHO and LHO bodies, provided significant spaces for crystallization of galena. The differences in coefficients of thermal expansion between pyrite and quartz led to a difference in volume changes between quartz grains and pyrite grains surrounding them and contributed to cracking of the pyrite grains when temperature changed. Combined thermal expansion and elastic mismatch due to heating and subsequent cooling resulted in the radial and crescent cracking in the pyrite grains and along the quartz–pyrite grain boundaries.  相似文献   
152.
卡拉库鲁木变质核杂岩是慕土塔格岩体的南缘部分,由长城系片麻岩以及燕山期花岗岩组成,其中长城系片麻岩为一套低角闪岩相的变质侵入岩,主要岩性为(石榴石)黑云二长片麻岩、(石榴石)黑云斜长片麻岩;根据变形程度,将其划分为内带、中带及外带,其中在内带见有燕山期花岗岩。剥离断层沿变质核杂岩边缘呈向南凸出的弧形展布。剥离断层上盘滑脱体由长城系赛图拉岩群高绿片岩-低角闪岩相的变质岩系构成。变质核杂岩构造的形成时代为早-中侏罗世。  相似文献   
153.
塔中古溶洞见证晚奥陶世抬升幅度   总被引:2,自引:0,他引:2  
塔中隆起区上奥陶统良里塔格组灰岩与桑塔木组砂—粉砂岩之间为不整合接触,昭示着这两个组沉积期之间存在一次历时约百万年的区域性构造抬升事件。中古31井良里塔格组三段的4 125.6~4 133.9 m井段为垮塌型溶洞沉积,洞顶距良里塔格组二段顶部190.6 m,溶洞中角砾状充填物主要来自良里塔格组洞壁本身的礁相灰岩,且见数厘米厚的暗河流水沉积纹层,未发现源于其它时代的颗粒混杂其间。这一事实指证了溶洞的形成和充填时代均为良里塔格组沉积之后、桑塔木组覆盖之前的晚奥陶世凯迪中期。具溶蚀力的淡水潜流带的深度一般不低于周围的海平面,由此可推断出该井区这次抬升出海平面之上的高度,即使忽略良里塔格组顶部可能经地表剥蚀的良里塔格组一段,抬升出水面部分至少也应该有190 m,藉生态地层学恢复洞壁礁灰岩沉积时的海水深度约为30 m±,因此总抬升幅度至少能达到220 m。  相似文献   
154.
中国海城地震区地壳与上地幔构造特征的研究   总被引:1,自引:0,他引:1  
研究表明,海城地震区地壳与上地幔构造特征可以归纳为如下四点:1.震区所处的辽南地区,其地壳是由高速与低速相间的成层介质组成,地壳与上地幔结构不论纵向和横向都是不均匀的,且被深大断裂切割为若干块体;2.本区地壳按其界面分布特征可分为上层地壳、中层地壳和下层地壳;3.本区地壳介质在纵向及横向上均存在明显的不均一性;4.海城地震震源区位于耿庄——海城上地幔局部隆起东侧的中层地壳上部。  相似文献   
155.
The anomaly response characteristics of the vertical line‐source 3D borehole‐to‐surface model are simulated by an adaptive finite element method. The calculation shows that the anomaly in the radial direction is pressed and the closer to the source, the more pronounced, the anomaly is stretched in the direction perpendicular to the radius. Adding a B pole in the Y direction can offset the effect of stretching to some extent. The anomaly that is closer to the source of the profile is clearer than the anomaly that is far from the source. The research results are of great significance for guiding the practical application of the borehole‐to‐surface electrical method.  相似文献   
156.
青藏高原西北缘盆山过渡带陡坡地貌的形成时代与成因   总被引:1,自引:0,他引:1  
平均海拔大于4500 m的青藏高原,是通过高原边缘的陡坡地貌与海拔低于1500 m的周缘盆地或平原相连接的,这些围绕高原的陡坡地貌是何时、如何形成的呢?本文通过对西昆仑山中段北缘主逆冲断层上盘陡坡地貌区9件磷灰石样品的裂变径迹年龄与长度分析表明:在海拔3900~4635 m的陡坡地貌中的裂变径迹样品年龄为6.2±1.4 Ma~0.9±0.3 Ma,呈现“上新下老”的反序分布特征; 而通过热历史模拟显示约5 Ma,约3~2 Ma,约2~1 Ma 和约1 Ma该地区出现多阶段的隆升与剥露。结合前人研究成果和野外地质的观察认为,现今青藏高原西北缘陡坡地貌的形成是中新世晚期以来高原边界叠瓦状断裂系经历了约8 Ma、约5 Ma、约3~2 Ma、约2~1 Ma和约1 Ma多阶段后展式逆冲运动的结果,这为青藏高原周缘陡坡地貌的形成和青藏高原的隆升时代与型式提供了关键的热年代学约束。  相似文献   
157.
Evaporation and recharge are important hydrological processes in the water cycle. However, accurately quantifying these two processes of river remains to be difficult due to their spatial heterogeneity and the limitations of traditional methods. In this study, a more reliable method of stable isotopes of δ 18O and δ 2H based on the Rayleigh distillation equation and mass conservation was used to estimate the evaporation and recharge of the rivers in the lower reaches of the Yellow River, North China Plain. Comprehensive sampling campaigns including 30 surface water samples from 10 rivers, 33 groundwater samples from domestic and observation wells, and two Yellow River water samples were conducted. The results showed that the evaporation proportion of the rivers based on δ 18O and δ 2H both averaged 14.4%. The evaporation proportions in each river did not completely follow a linear increasing trend along the flow path. This phenomenon could be mainly explained by the different proportions of recharge from groundwater and Yellow River water. With closer to the Yellow river, evaporation of the rivers decreased while the recharge by the Yellow River increased. Regression equations based on δ 18O, δ 2H, and their average revealed that the evaporation proportion respectively increased by 1.02, 0.79, and 0.90% with the increase in the distance to the Yellow River per 10 km. On the contrary, the recharge proportion decreased by 7.68, 5.51, and 6.59%, respectively. In addition, using δ 18O rather than δ 2H was more reliable in studying the spatial influence of the Yellow River on evaporation and recharge. Sensitivity analysis showed that the evaporation model was most sensitive to isotopic composition, rather than to air temperature or relative humidity. The results of this study provide insights into the determination of river hydrological processes and the management of water resources.  相似文献   
158.
塔里木盆地满西地区海相油气成藏规律   总被引:4,自引:0,他引:4  
满西地区是塔里木盆地海相油气藏的主要富集区之一,侧向运移是该区油气成藏的一个重要特征。该区油气藏的形成和分布主要受控干古隆起背景、东河砂岩优质输导层的展布以及中一新生代(尤其是晚喜马拉雅期)构造变动等三大因素。古隆起背景的存在是该区油气藏形成和富集的关键。研究表明,哈得逊古隆起及其斜坡上倾部位是满西地区油气聚集成藏的最有利地区,石炭系东河砂岩是油气富集的主要层位,东河砂岩地层圈闭和地层一构造复合型圈闭是油气藏形成的主要类型。认为满西地区大中型油气田的勘探应以哈得逊古隆起及其西斜坡为重点。  相似文献   
159.
西藏羊八井热田地热流体成因及演化的惰性气体制约   总被引:4,自引:5,他引:4  
赵平  Mack  KENNEDY 《岩石学报》2001,17(3):497-503
地热流体中惰性气体的相对丰度和同位素组成,不仅可以揭露热田的热源性质,而且还能够揭示深,浅层地热流体的内在联系和演化过程等。在西藏羊八井热田的地热气体中,已检测出大量的^4He组分,3He/^4He值是大气的0.087-0.259倍,表明深部地壳物质的局部熔融为热田提供能量,浅层地热流体的3He/4He 值自西北向东南呈降低趋势,与热储温度的变化相一致,反映出侧向运移时补充了更多的壳源氦,热田北区深层地热流体具有稍高的3He/4He值,是浅层地热流体的母源,气体中氪和氙的相对丰度具有大气降水成因的特征,结合现有的实际资料,建立了热田地热流体的概念模型。  相似文献   
160.
鲁东-苏北榴辉岩的构造特征及其折返机制   总被引:15,自引:6,他引:15  
王清晨  张儒瑷  从柏林  赵中岩  叶凯 《岩石学报》1992,8(2):153-160,T001
鲁东-苏北地区出露了M型和Q型两类榴辉岩,前者的原岩为地幔岩类,后者的原岩为地壳岩类。它们均呈外来岩块产出于片麻岩中。其形成经历了前榴辉岩I、A和S阶段,在I和A阶段它们表现为韧性变形,而在S阶段则表现为碎裂变形。它们的折返过程经历了剪切回流和区域性隆起剥蚀。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号