首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   6篇
测绘学   1篇
大气科学   2篇
地球物理   5篇
地质学   22篇
天文学   3篇
自然地理   3篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
排序方式: 共有36条查询结果,搜索用时 0 毫秒
31.
Major and trace element zonation patterns were determined in ultrahigh-pressure eclogite garnets from the Western Gneiss Region (Norway). All investigated garnets show multiple growth zones and preserve complex growth zonation patterns with respect to both major and rare earth elements (REE). Due to chemical differences of the host rocks two types of major element compositional zonation patterns occur: (1) abrupt, step-like compositional changes corresponding with the growth zones and (2) compositionally homogeneous interiors, independent of growth zones, followed by abrupt chemical changes towards the rims. Despite differences in major element zonation, the REE patterns are almost identical in all garnets and can be divided into four distinct zones with characteristic patterns.In order to interpret the major and trace element distribution and zoning patterns in terms of the subduction history of the rocks, we combined thermodynamic forward models for appropriate bulk rock compositions to yield molar proportions and major element compositions of stable phases along the inferred pressure-temperature path with a mass balance distribution of REEs among the calculated stable phases during high pressure metamorphism. Our thermodynamic forward models reproduce the complex major element zonation patterns and growth zones in the natural garnets, with garnet growth predicted during four different reaction stages: (1) chlorite breakdown, (2) epidote breakdown, (3) amphibole breakdown and (4) reduction in molar clinopyroxene at ultrahigh-pressure conditions.Mass-balance of the rare earth element distribution among the modelled stable phases yielded characteristic zonation patterns in garnet that closely resemble those in the natural samples. Garnet growth and trace element incorporation occurred in near thermodynamic equilibrium with matrix phases during subduction. The rare earth element patterns in garnet exhibit distinct enrichment zones that fingerprint the minerals involved in the garnet-forming reactions as well as local peaks that can be explained by fractionation effects and changes in the mineral assemblage.  相似文献   
32.
33.
The Istituto di Geoscienze e Georisorse (IGG), on behalf and with the support of the International Atomic Energy Agency (IAEA), prepared eight geological materials (three natural waters and five rocks and minerals), intended for a blind interlaboratory comparison of measurements of boron isotopic composition and concentration. The materials were distributed to twenty seven laboratories - virtually all those performing geochemical boron isotope analyses in the world -which agreed to participate in the intercomparison exercise. Only fifteen laboratories, however, ultimately submitted the isotopic and/or concentration results they obtained on the intercomparison materials. The results demonstrate that interlaboratory reproducibility is not well reflected by the precision values reported by the individual laboratories and this observation holds true for both boron concentration and isotopic composition. The reasons for the discrepancies include fractionations due to the chemical matrix of materials, relative shift of the zero position on the δ11B scale and a lack of well characterized materials for calibrating absolute boron content measurements. The intercomparison materials are now available at the IAEA (solid materials) and IGG (waters) for future distribution.  相似文献   
34.
Eleven synthetic silicate and phosphate glasses were prepared to serve as reference materials for in situ microanalysis of clinopyroxenes, apatite and titanite, and other phosphate and titanite phases. Analytical results using different micro-analytical techniques showed that the glass fragments were homogeneous in major and trace elements down to the micrometre scale. Trace element determinations using inductively coupled plasma-mass spectrometry (ICP-MS), multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) and secondary ionisation mass spectrometry (SIMS) showed good agreement for most elements (Li, Be, B, Cs, Rb, Ba, Sr, Ga, Pb, U, Th, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Er, Tm, Yb, Lu, Zr, Hf, Ta, Nb) studied and provide provisional recommended values.  相似文献   
35.
Experimental determination of the pressure and temperature controls on Ti solubility in quartz provides a calibration of the Ti‐in‐quartz (TitaniQ) geothermometer applicable to geological conditions up to ~ 20 kbar. We present a new method for determining 48Ti mass fractions in quartz by LA‐ICP‐MS at the 1 μg g?1 level, relevant to quartz in HP‐LT terranes. We suggest that natural quartz such as the low‐CL rims of the Bishop Tuff quartz (determined by EPMA; 41 ± 2 μg g?1 Ti, 2s) is more suitable than NIST reference glasses as a reference material for low Ti mass fractions because matrix effects are limited, Ca isobaric interferences are avoided, and polyatomic interferences at mass 48 are insignificant, thus allowing for the use of 48Ti as a normalising mass. Average titanium mass fraction from thirty‐three analyses of low temperature quartz from the Czech Erzgebirge is 0.9 ± 0.2 μg g?1 (2s) using 48Ti as a normalising mass and Bishop Tuff quartz rims as a reference material. The 2s average analytical uncertainty for individual analyses of 48Ti is 8% for 50 μm spots and 7% for 100 μm spots, which offers much greater accuracy than the 21–41% uncertainty (2s) incurred from using 49Ti as an analyte.  相似文献   
36.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号