首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   23篇
  国内免费   1篇
测绘学   7篇
大气科学   31篇
地球物理   89篇
地质学   162篇
海洋学   40篇
天文学   46篇
自然地理   43篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   10篇
  2018年   8篇
  2017年   5篇
  2016年   12篇
  2015年   13篇
  2014年   17篇
  2013年   32篇
  2012年   18篇
  2011年   22篇
  2010年   18篇
  2009年   25篇
  2008年   18篇
  2007年   24篇
  2006年   23篇
  2005年   19篇
  2004年   23篇
  2003年   14篇
  2002年   18篇
  2001年   8篇
  2000年   4篇
  1999年   7篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
  1977年   4篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有418条查询结果,搜索用时 78 毫秒
201.
Abstract

Heavy rainfall events often occur in southern French Mediterranean regions during the autumn, leading to catastrophic flood events. A non-stationary peaks-over-threshold (POT) model with climatic covariates for these heavy rainfall events is developed herein. A regional sample of events exceeding the threshold of 100 mm/d is built using daily precipitation data recorded at 44 stations over the period 1958–2008. The POT model combines a Poisson distribution for the occurrence and a generalized Pareto distribution for the magnitude of the heavy rainfall events. The selected covariates are the seasonal occurrence of southern circulation patterns for the Poisson distribution parameter, and monthly air temperature for the generalized Pareto distribution scale parameter. According to the deviance test, the non-stationary model provides a better fit to the data than a classical stationary model. Such a model incorporating climatic covariates instead of time allows one to re-evaluate the risk of extreme precipitation on a monthly and seasonal basis, and can also be used with climate model outputs to produce future scenarios. Existing scenarios of the future changes projected for the covariates included in the model are tested to evaluate the possible future changes on extreme precipitation quantiles in the study area.

Editor Z.W. Kundzewicz; Associate editor K. Hamed

Citation Tramblay, Y., Neppel, L., Carreau, J., and Najib, K., 2013. Non-stationary frequency analysis of heavy rainfall events in southern France. Hydrological Sciences Journal, 58 (2), 280–294.  相似文献   
202.
The Sachette rock glacier is an active rock glacier located between 2660 and 2480 m a.s.l. in the Vanoise Massif, Northern French Alps (45° 29′ N, 6° 52′ E). In order to characterize its status as permafrost feature, shallow ground temperatures were monitored and the surface velocity measured by photogrammetry. The rock glacier exhibits near‐surface thermal regimes suggesting permafrost occurrence and also displays significant surface horizontal displacements (0.6–1.3 ± 0.6 m yr–1). In order to investigate its internal structure, a ground‐penetrating radar (GPR) survey was performed. Four constant‐offset GPR profiles were performed and analyzed to reconstruct the stratigraphy and model the radar wave velocity in two dimensions. Integration of the morphology, the velocity models and the stratigraphy revealed, in the upper half of the rock glacier, the good correspondence between widespread high radar wave velocities (>0.15–0.16 m ns–1) and strongly concave reflector structures. High radar wave velocity (0.165–0.170 m ns–1) is confirmed with the analysis of two punctual common mid‐point measurements in areas of exposed shallow pure ice. These evidences point towards the existence of a large buried body of ice in the upper part of the rock glacier. The rock glacier was interpreted to result from the former advance and decay of a glacier onto pre‐existing deposits, and from subsequent creep of the whole assemblage. Our study of the Sachette rock glacier thus highlights the rock glacier as a transitional landform involving the incorporation and preservation of glacier ice in permafrost environments with subsequent evolution arising from periglacial processes.  相似文献   
203.
The city of Oran is exposed to a significant seismic hazard, as almost all the northern Algeria territory, where numerous casualties and severe damage occurred in the last decades due to several moderate to large earthquakes. A mitigation policy should include the establishment of priorities to reduce the vulnerability of existing buildings based on the knowledge of the actual urban fabrics. The complexity of vulnerability assessment requires a gradual approach from the urban scale to the building scale. The study reported in this paper corresponds to the first step of such an approach, i.e., a preliminary study of the seismic vulnerability and expected damage within an urban district of the city of Oran, based on a non-dedicated data base from a building survey previously performed for other purposes. The main goals of this study are twofold: (1) an assessment of the degree of uncertainty and robustness of such results through a comparison of the results derived from different urban vulnerability methods (GNDT 2; RISK-UE LM1; and VULNERALP 2.0) and (2) an assessment of the actual level of seismic risk in the city of Oran. Cross-method comparisons and correlations highlight a satisfactory agreement between mean damage estimates at the urban scale, despite significant scattering at the single building scale, and uncertainty levels which vary significantly from one method to the other. For a given scenario, the three methods provide damage estimates lying within half an EMS damage degree of one another, with some systematic positive bias for VULNERALP and negative bias for RISK-UE LM1, especially for masonry buildings. The expected mean damage is very important for intensities 9 and 10, with an average damage grade around 3–4 for intensity 9 and 4–5 for intensity 10. The spatial distribution of damage systematically exhibits larger values in the northern, older, commercial area, than in the southern, more recent and more residential area, in relation to the building typology and the existence of several aggravating factors. Some areas of higher vulnerability / damage can be distinguished, which should receive particular attention for retrofitting priorities or urban planning decisions, also taking into account their cultural heritage value.  相似文献   
204.
We analysed charcoal and pollen from sediments obtained from two lakes in the northwestern mixed‐wood Canadian boreal forest in order to reconstruct fire‐return intervals and vegetation dynamics over the last 8000 years. Sites were selected with contrasting soil properties (mesic versus dry‐sandy soils), allowing an estimation of the potential influence of soils on long‐term vegetation and fire dynamics. The sites likely experienced fewer fires during the period extending from 8000 to 4000 cal. a BP than over the last 4000 years. At both sites, eastern white pine (Pinus strobus) populations were most extensive shortly after deglaciation, with vegetation later shifting towards mixed woodlands with less P. strobus and more extensive Picea and Pinus banksiana populations. This gradual vegetation shift was probably induced by the establishment of colder and moister conditions along with a fire‐regime change. In spite of the parallel long‐term vegetation trajectories, vegetation composition differed between the two sites in both the past and present. Whereas Picea was more abundant at the mesic site, the fire‐adapted P. banksiana populations were more extensive at the sandy‐soil site. These differences in vegetation composition indicate that, in addition to climate changes and fire occurrence, soil properties also influenced vegetation dynamics. A likely increase in fire frequency in the Canadian boreal forest during the 21st century might therefore favour the expansion of these two disturbance‐adapted trees with spatial heterogeneity in the populations due to varying soil types. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
205.
A comparative study of optimization techniques for identifying soil parameters in geotechnical engineering was first presented. The identification methodology with its 3 main parts, error function, search strategy, and identification procedure, was introduced and summarized. Then, current optimization methods were reviewed and classified into 3 categories with an introduction to their basic principles and applications in geotechnical engineering. A comparative study on the identification of model parameters from a synthetic pressuremeter and an excavation tests was then performed by using 5 among the mostly common optimization methods, including genetic algorithms, particle swarm optimization, simulated annealing, the differential evolution algorithm and the artificial bee colony algorithm. The results demonstrated that the differential evolution had the strongest search ability but the slowest convergence speed. All the selected methods could reach approximate solutions with very small objective errors, but these solutions were different from the preset parameters. To improve the identification performance, an enhanced algorithm was developed by implementing the Nelder‐Mead simplex method in a differential algorithm to accelerate the convergence speed with strong reliable search ability. The performance of the enhanced optimization algorithm was finally highlighted by identifying the Mohr‐Coulomb parameters from the 2 same synthetic cases and from 2 real pressuremeter tests in sand, and ANICREEP parameters from 2 real pressuremeter tests in soft clay.  相似文献   
206.
Major fault zones in mountain areas are often associated with cold‐water circulations and hydrothermal pathways. Compared with the massif as a whole, the deep groundwater flows in these high hydraulic‐conductivity zones modify the thermal state of the surrounding rock. This paper examines the thermal effects of groundwater flow in the area around the steeply dipping La Léchère deep fault zone (LFZ, French Alps) and associated shallow decompressed zone. We used a 3D numerical model drawn up from groundwater circulation data to investigate the La Léchère hydrothermal system and the thermal state of the rock in the valley sides. Hydrothermal simulations showed that convective flow into the LFZ cools the valley sides and creates a thermal upwelling under the valley floor. An unsteady thermal regime that continues for about 10,000 years is also needed to obtain the temperatures currently found under the valley floor in the LFZ. Temperature‐depth profiles around the LFZ show disturbances in the thermal gradients in the valley sides and the valley floor. Convective heat transfer into the LFZ and the decompressed zone, and conductive heat transfer in the surrounding rocks produce an unsteady, asymmetric thermal state in the rock on both sides of the LFZ.  相似文献   
207.
The hypothesis tested in this study is that ice‐scars recorded by lakeshore tree stands can be used as an integrative proxy indicator of the overall hydrodynamic disturbance regimes affecting northern lakeshores. A 2‐km‐long shore segment was divided into 21 sections according to shore orientation and slope. An ice‐scar chronology and a wave exposure index value were obtained for each shore section. A significant relationship was found between ice‐scar chronology and wave exposure index, which indicates that the mechanical action and physical force of ice activity mainly depend on the same environmental factors determining exposure to wave action (i.e. fetch, wind direction and velocity, and shore slope). The spatial and temporal variability of ice‐scar chronology features also corresponded to the distribution of geomorphological features associated with ice activity along the shoreline. Analysis of the hydrological signal associated with these ice‐scar chronology features indicated that an increase in ice‐push frequency observed in the 1930s can be associated to an increase in wave action related to more frequent spring floods maintaining high lake levels during the ice‐free period. This study demonstrates that ice‐scars have strong potential as proxy indicators of shore exposure and provide a temporal frame to reconstruct the history of lakeshore disturbance regimes at a local scale. Together, ice‐scars and wave exposure index provide essential information to interpret the evolution of lakeshore vegetation mosaics in time and space. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
208.
The hydrodynamic characterization of the epikarst, the shallow part of the unsaturated zone in karstic systems, has always been challenging for geophysical methods. This work investigates the feasibility of coupling time‐lapse refraction seismic data with petrophysical and hydrologic models for the quantitative determination of water storage and residence time at shallow depth in carbonate rocks. The Biot–Gassmann fluid substitution model describing the seismic velocity variations with water saturation at low frequencies needs to be modified for this lithology. I propose to include a saturation‐dependent rock‐frame weakening to take into account water–rock interactions. A Bayesian inversion workflow is presented to estimate the water content from seismic velocities measured at variable saturations. The procedure is tested first with already published laboratory measurements on core samples, and the results show that it is possible to estimate the water content and its uncertainty. The validated procedure is then applied to a time‐lapse seismic study to locate and quantify seasonal water storage at shallow depth along a seismic profile. The residence time of the water in the shallow layers is estimated by coupling the time‐lapse seismic measurements with rainfall chronicles, simple flow equations, and the petrophysical model. The daily water input computed from the chronicles is used to constraint the inversion of seismic velocities for the daily saturation state and the hydrodynamic parameters of the flow model. The workflow is applied to a real monitoring case, and the results show that the average residence time of the water in the epikarst is generally around three months, but it is only 18 days near an infiltration pathway. During the winter season, the residence times are three times shorter in response to the increase in the effective rainfall.  相似文献   
209.
The development of intense agriculture in semiarid areas modifies intensity and spatial distribution of groundwater recharge by summing irrigation return flow to limited rainfall infiltration. Environmental tracers provide key information, but their interpretation is complicated by more complex groundwater flow patterns. In multilayered aquifers, the real origin of the groundwater samples is hard to assess because of local mixing processes occurring inside long‐screened boreholes. We use environmental tracers (14C, 13C, 2H, 18O, 3H) to investigate the long‐term evolution of recharge in the five‐layer Campo de Cartagena aquifer in South‐Eastern Spain, in addition to high‐resolution temperature loggings to identify the depth of origin of groundwater. Despite the complex background, this methodology allowed a reliable interpretation of the geochemistry and provided a better understanding of the groundwater flow patterns. The tritium method did not give good quantitative results because of the high variability of the recharge signal but remained an excellent indicator of recent recharge. Nonetheless, both pre‐anthropization and post‐anthropization recharge regime could be identified and quantified by radiocarbon. Before the development of agriculture, recharge varied from 17 mm.year‐1 at the mountain ranges to 6 mm.year‐1 in the plain, whereas the mean annual rainfall is about 300 mm. In response to the increase of agricultural activity, recharge fluxes to the plain were amplified and nowadays reach up to 210 mm.year‐1 in irrigated areas. These values are strengthened by global water budget and local unsaturated zone studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
210.
While it is well known that the ocean is one of the most important component of the climate system, with a heat capacity 1,100 times greater than the atmosphere, the ocean is also the primary reservoir for freshwater transport to the atmosphere and largest component of the global water cycle. Two new satellite sensors, the ESA Soil Moisture and Ocean Salinity (SMOS) and the NASA Aquarius SAC-D missions, are now providing the first space-borne measurements of the sea surface salinity (SSS). In this paper, we present examples demonstrating how SMOS-derived SSS data are being used to better characterize key land–ocean and atmosphere–ocean interaction processes that occur within the marine hydrological cycle. In particular, SMOS with its ocean mapping capability provides observations across the world’s largest tropical ocean fresh pool regions, and we discuss from intraseasonal to interannual precipitation impacts as well as large-scale river runoff from the Amazon–Orinoco and Congo rivers and its offshore advection. Synergistic multi-satellite analyses of these new surface salinity data sets combined with sea surface temperature, dynamical height and currents from altimetry, surface wind, ocean color, rainfall estimates, and in situ observations are shown to yield new freshwater budget insight. Finally, SSS observations from the SMOS and Aquarius/SAC-D sensors are combined to examine the response of the upper ocean to tropical cyclone passage including the potential role that a freshwater-induced upper ocean barrier layer may play in modulating surface cooling and enthalpy flux in tropical cyclone track regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号