首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   0篇
测绘学   1篇
大气科学   2篇
地球物理   19篇
地质学   44篇
海洋学   31篇
天文学   11篇
综合类   2篇
自然地理   12篇
  2021年   3篇
  2019年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   8篇
  2010年   7篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   7篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1960年   1篇
排序方式: 共有122条查询结果,搜索用时 166 毫秒
71.
We present in this study the effects of short‐term heating on organics in the Tagish Lake meteorite and how the difference in the heating conditions can modify the organic matter (OM) in a way that complicates the interpretation of a parent body's heating extent with common cosmothermometers. The kinetics of short‐term heating and its influence on the organic structure are not well understood, and any study of OM is further complicated by the complex alteration processes of the thermally metamorphosed carbonaceous chondrites—potential analogues of the target asteroid Ryugu of the Hayabusa2 mission—which had experienced posthydration, short‐duration local heating. In an attempt to understand the effects of short‐term heating on chondritic OM, we investigated the change in the OM contents of the experimentally heated Tagish Lake meteorite samples using Raman spectroscopy, scanning transmission X‐ray microscopy utilizing X‐ray absorption near edge structure spectroscopy, and ultraperformance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry. Our experiment suggests that graphitization of OM did not take place despite the samples being heated to 900 °C for 96 h, as the OM maturity trend was influenced by the heating conditions, kinetics, and the nature of the OM precursor, such as the presence of abundant oxygenated moieties. Although both the intensity of the 1s?σ* exciton cannot be used to accurately interpret the peak metamorphic temperature of the experimentally heated Tagish Lake sample, the Raman graphite band widths of the heated products significantly differ from that of chondritic OM modified by long‐term internal heating.  相似文献   
72.
A combined ocean bottom seismometer, multichannel seismic reflection and gravity study has been carried out along the spreading direction of the Knipovich Ridge over a topographic high that defines a segment center. The youngest parts of the crust in the immediate vicinity of the ridge reveal fractured Oceanic Layer 2 and thermally expanded and possibly serpentinized Oceanic Layer 3. The mature part of the crust has normal thickness and seismic velocities with no significant crustal thickness and seismic velocity variations. Mature Oceanic Layer 2 is in addition broken into several rotated fault blocks. Comparison with a profile acquired ~40 km north of the segment center reveals significant differences. Along this profile, reported earlier, periods of slower spreading led to generation of thin crust with a high P-wave velocity (Vp), composed of a mixture of gabbro and serpentinized mantle, while periods of faster spreading led to generation of more normal gabbroic crust. For the profile across the segment center no clear relation exists between spreading rate and crustal thickness and seismic velocity. In this study we have found that higher magmatism may lead to generation of oceanic crust with normal thickness even at ultra-slow spreading rates.  相似文献   
73.
The ultra-slow, asymmetrically-spreading Knipovich Ridge is the northernmost part of the Mid Atlantic ridge system. In the autumn of 2002 a combined ocean-bottom seismometer multichannel seismic (OBS/MCS) and gravity survey along the spreading direction of the Knipovich Ridge was carried out. The main objective of the study was to gain an insight into the crustal structure and composition of what is assumed to be an amagmatic segment of oceanic crust. P-wave velocity and Vp/Vs models were built and complemented by a gravity model. The 190 km long transect reveals a much more complex crustal structure than anticipated. The magmatic crust is thinner than the global average of 7.1 ± 1.0 km. The young fractured portion of Oceanic Layer 2 has low seismic velocities while the older part has normal seismic velocities and is broken into several rotated fault blocks seen as thickness variations of Layer 2. The youngest part of Oceanic Layer 3 is also dominated by low velocities, indicative of fracturing, seawater circulation and thermal expansion. The remaining portion of Layer 3 exhibits inverse variations in thickness and seismic velocity. This is explained by a sequence of periods of faster spreading (estimated to be up to 8 mm/year from interpretation of magnetic anomalies) when more normal gabbroic crust was being generated and periods of slower spreading (5.5 mm/year) when amagmatic stretching and serpentinization of the upper mantle occurred, and crust composed of mixed gabbro and serpentinized mantle was generated. The volumetric changes and upward fluid migration, associated with the process of serpentinization in this part of the crust, caused disruption to the overlying sedimentary layers.  相似文献   
74.
Characterization of Fe(III) (hydr)oxides in soils near the Ichinokawa mine was conducted using X-ray absorption fine structure (XAFS) and Mössbauer spectroscopies, and the structural changes were correlated with the release of As into pore-water. The Eh values decreased monotonically with depth. Iron is mainly present as poorly-ordered Fe(III) (hydr)oxides, such as ferrihydrite, over a wide redox range (from Eh = 360 to −140 mV). Structural details of the short-range order of these Fe(III) (hydr)oxides were examined using Mössbauer spectroscopy by comparing the soil phases with synthesized ferrihydrite samples having varying crystallinities. The crystallinity of the soil Fe (hydr)oxides decreased slightly with depth and Eh. Thus, within the redox range of this soil profile, ferrihydrite dominated, even under very reducing conditions, but the crystalline domain size, and, potentially, particle size, changed with the variation in Eh. In the soil–water system examined here, where As concentration and the As(III)/As(V) ratio in soil water increased with depth, ferrihydrite persisted and maintained or even enhanced its capacity for As retention with increased reducing conditions. Therefore, it is concluded that As release from these soils largely depends on the transformation of As(V) to As(III) rather than reductive dissolution of Fe(III) (hydr)oxide.  相似文献   
75.
The oxidation state and mineral phase association of Co, Ce, and Pb in hydrogenetic, diagenetic, and hydrothermal marine ferromanganese oxides were characterized by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy and chemical extraction. Cobalt is trivalent and associated exclusively with the Mn oxide component (vernadite). Cerium is tetravalent in all genetic-type oxides (detection limit for Ce(III) ∼ 5 at. %), including Fe-rich areas (ferrihydrite) of hydrogenetic oxides, and is associated primarily with vernadite. Thus, the extent of a Ce anomaly does not result from variations in redox conditions, but appears to be kinetically controlled, decreasing when the growth rate increases from hydrogenetic to diagenetic to hydrothermal oxides. Lead is divalent and associated with Mn and Fe oxides in variable proportions. According to EXAFS data, Pb is mostly sorbed on edge sites at chain terminations in Fe oxide and at layer edges in Mn oxide (ES complex), and also on interlayer vacancy sites in Mn oxide (TCS complex). Sequential leaching experiments, spectroscopic data, and electrochemical considerations suggest that the geochemical partitioning in favor of the Mn oxide component decreases from Co to Ce to Pb, and depends on their oxidative scavenging by Mn and Fe oxides.  相似文献   
76.
This study develops a fabrication technique to obtain Fe-free and Fe-bearing (Fe:Mg = 1:9) olivine aggregates not only with high density and fine grain size but with crystallographic preferred orientation (CPO). A magnetic field (≤12 T) is applied to synthetic, fine-grained (~120 nm), olivine particles dispersed in solvent. The alignment of certain crystallographic axes of the particles with respect to a magnetic direction is anticipated due to magnetic anisotropy of olivine. The dispersed particles are gradually consolidated on a porous alumina mold covered with a solid–liquid separation filter during drainage of the solvent. The resultant aligned consolidated aggregate is then isostatically pressed and vacuum sintered. We find that (1) preparation of fully reacted olivine particles, with less propensity to coalesce; (2) preparation of a suspension with highly dispersed particles; and (3) application of a certain strength of the magnetic field are essential to obtain well-sintered and well-aligned aggregates. High density (i.e., <1 vol% porosity) and fine grain size (~1 μm) Fe-free and Fe-bearing olivine aggregates were successfully synthesized with uniaxially aligned a- and c-axes, respectively. Attempts to uniaxially align the magnetization hard axis and to triaxially align Fe-bearing olivine by rotating the suspension in the magnetic field succeeded in obtaining weakly developed CPO aggregates.  相似文献   
77.
Particulate matter plays an important role in the removal of metal ions from water in natural aquifers. Some of the most important of these materials consist of associations of inorganic particles (clay minerals, oxides) with humic substances, associations that can form readily in such an environment due to the strong affinity between inorganic particles and humic substances. These associations are referred to in this paper as organic-inorganic hybrids. However, it is not clear whether the sorbed species of metal ions in such organic-inorganic hybrids are organic or inorganic species because of the complexity of such hybrids and the lack of appropriate methods for characterizing the trace metal ions incorporated in them. In this study, laser-induced fluorescence spectroscopy (LIF) was used successfully to characterize the Cm(III) species on an FA(fulvic acid)-montmorillonite hybrid, an example of such organic-inorganic hybrids. The LIF clearly showed that Cm(III) can be sorbed as Cm(III)-fulvate complex in the FA-montmorillonite hybrid. These results were consistent with those of experiments of solid-water partitioning of Cm(III) (or Eu(III) used as an analogue) and speciation calculations based on the stability constants of Cm(III)-fulvate complexes determined in this study. The results of LIF and the partitioning experiments showed that the solid-water distribution of humic substances governed that of Cm(III) under our experimental conditions. The Cm(III) preference for forming Cm(III)-fulvate complexes was also evident under a condition that would be found in a natural aquifer with a fairly low concentration of organic matter in freshwater (dissolved organic carbon: 2 mg/dm3), as determined by our speciation calculations. These findings on the importance of humic substances in the migration of Cm(III) indicate that the clarification of the environmental behavior of humic substances is necessary to understand fully the behavior of Cm(III), or actinide(III) and lanthanide(III) ions, in natural aquifers.  相似文献   
78.
A dynamic effective stress analysis with the finite element method has long been recommended to predict the liquefaction phenomena of sandy soil by authors and Zienkiewicz et al. as well as the similar approaches by the others. Our approach of the analysis is summarized in the first.

Until recently, however, these approaches has not commonly been used as the means of design, although its capability of prediction is appreciated by geotechnicians. This method has been neglected because of the lack of verification studies of soil models of sand and mathematical formulation for boundary problems of liquefaction phenomena. Therefore the verification of the numerical method to evaluate liquefaction potential are urgent requirement of the recent engineering practice. To respond this requirement, extensive numerical studies on the liquefation simulations are performed by DIANA program for shaking table tests which have been conducted by the authors. The test models are soil-structure type models with combination of homogenous ground and partially improved ground by compaction.

The good performance of our approach is proved by the results of numerical simulation showing good agreement with experimental data in terms of response acceleration, excess pore pressure, and deformation profile. It is also demonstrated that the numerical results can provide substantial information to understand the mechanisms of soil ground behavior which is not easily obtained by experiments.

The procedure to identify soil constants for the reflecting surface model is also reported in details.  相似文献   

79.
Rare earth element (REE) pattern is a unique geochemical tracer and has been measured for various natural materials. Among these, the REE distribution pattern between bacteria and water exhibits anomalous enrichment in the heavy REE (HREE) part, which can act as a signature of bacteria-related materials in natural samples. In this study, the REE binding site on the cell surface of a Gram-positive bacterium (Bacillus subtilis) responsible for HREE enrichment has been identified using extended X-ray absorption fine structure (EXAFS) coupled with a study of the variation in REE distribution patterns. The EXAFS data showed that the HREEs form complexes with multiple phosphate site (including phosphoester site) with a larger coordination number (CN) at lower REE-bacteria ratios ([REE]/[bac]), while light and middle REEs form complexes to the phosphate site with a lower CN. The fraction coordinated to carboxylate increased for all REEs with increasing [REE]/[bac] ratio. On the other hand, the enrichment of HREE in the REE distribution patterns of the bacteria was less marked with increasing [REE]/[bac] ratio. This result is consistent with the EXAFS data, because the REE pattern of surface complex with multiple phosphate in a reference material exhibits a monotonous increase for heavier REE, while phosphate surface complex with a low CN and a carboxylate site reach a maximum around Sm and Eu. Based on these results, it is clear that the REE are primarily bound to the phosphate site and subsequently to the carboxylate site on the bacterial cell surface.Regarding the pH dependence in the range (3 < pH < 7), both the EXAFS and REE pattern data indicate that the fraction of REE-carboxylate increased as the pH increases. The results above obtained for B. subtilis were also valid for Escherichia coli, a Gram-negative bacterium, showing that similar phosphate and carboxylate sites are also available in the cell walls of E. coli, or other Gram negative bacteria. In all our results, the variation in REE patterns correlated with the binding site indicated by EXAFS, showing that the REE pattern itself reflects the binding site of the REE at the bacterial surface for various parameters (pH and [REE]/[bac] ratio). Thus, the REE patterns can be used to estimate the binding sites for lower [REE]/[bac] ratios where spectroscopic techniques cannot be applied.The average bond length between the REE and oxygen was compared for various REE sorbed on bacteria, showing that the bond length for HREE (Er to Lu) was much shorter than those extrapolated from the trend between La and Dy, because of the selective binding of the HREE as the multiple phosphate surface complexes. Our results are consistent with the selective enrichment of the HREE at the bacterial cell surfaces, considering that chemical species with a shorter bond length are more stable. Thus, it is clear that the HREE enrichment at the bacterial cell surfaces is caused by the formation of the multiple phosphate surface complexes. Based on these results, it is suggested that materials having such phosphate sites such as bacteria and bacteria-related materials can induce anomalous HREE enrichment in natural systems.  相似文献   
80.
In agricultural areas, fertilizer application is the main source of nitrate contamination of groundwater. To develop fertilizer management strategies to combat this problem, arable land in Hokkaido, Japan was evaluated using geographic information system techniques for intrinsic groundwater vulnerability to nitrate contamination. The DRASTIC method was modified to adapt it to the Hokkaido environment and used for the evaluation. Of the seven original DRASTIC factors, the depth to water (D), net recharge (R), soil media (S), topography (T), and impact of vadose zone media (I) were selected and used to explain the vertical movement of contaminants to the aquifer. The rating for the net recharge factor was also modified to a dilution factor for contaminants, rather than as a transporter. The frequency of wells with nitrate concentrations exceeding the Japanese environmental standard (10 mg/L) was reasonably explained by vulnerability evaluation results (GLM: logit-link, quasi-binomial distribution, Y = [1 + exp(6.873765 − 0.045988 × X)]−1, p < 0.001). However, in the paddy fields and pastures, vulnerability did not exhibit a clear relationship with the frequency of wells exceeding the standard. This suggests that the modified DRASTIC method is applicable for fertilizer application management in upland fields. In addition, under the ongoing policy for acreage allotment for rice production, this method will be useful for deciding the arrangement of arable land and crop rotation taking into consideration the potential risk of fertilizer-induced nitrate contamination of groundwater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号