首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   6篇
测绘学   1篇
大气科学   6篇
地球物理   33篇
地质学   24篇
海洋学   19篇
天文学   16篇
综合类   2篇
自然地理   5篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   3篇
  2010年   7篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1975年   3篇
  1974年   3篇
  1971年   1篇
排序方式: 共有106条查询结果,搜索用时 31 毫秒
71.
A large number of tar globules with sessile organisms were collected from the surface tows taken with larval nets in the waters around the Ryukyu Islands during November and December, 1973. Bryozoans (one species), tubeworms (Serpulidae,Janua (Dexiospira) foraminosa (Moore &Bush)) and goose barnacles (Lepas pectinata Spengler,L. anatifera Linné) were the most important species of sessile animals found on these tar globules. Sinking of tar globules byLepas of middle or large size was suggested from the differences in their specific gravity.  相似文献   
72.
One-dimensional hydrodynamic simulations are performed in order to examine the influence of initial atmospheric structures on the dynamics of spicules. This is an extended version of our previous spicule theory: spicules are produced by the shock wave (MHD slow mode shock) which originates from a bright point appearance (sudden pressure increase) at the network in the photosphere or in the low chromosphere. Simulation results well reproduce the observational facts that spicules are absent over plages and long under coronal holes. The physical reason is that the growth of a shock wave during its propagation through the chromosphere is small in plage regions and large in coronal hole regions, since the growth of a shock is determined by the density ratio ( h 0/ c ) between the bright point and the corona. An empirical formula H max ( h 0/ c )0.46 is obtained, where H max is the maximum height of spicules above the transition region. The cross-section of the vertical magnetic flux tube is assumed to be constant in the numerical simulations.  相似文献   
73.
We study earthquakes in and near the TTT type triple junction off Boso peninsula, central Honshu, to elucidate the plate interaction in this area. The Pacific, North America (northeast Japan) and Philippine Sea plates meet at the junction of the Japan and Izu-Bonin Trenches, and the Sagami Trough. We determine focal mechanisms using WWSSN data. We also determine accurate focal depths by modeling body-waves. There is no serious trade-off between focal depth and source time function for the events treated in this study.The earthquake mechanisms and their focal depths show two major modes of deformation of the Pacific slab at the junction. One mode is represented by nearly vertical normal faults with strikes perpendicular to the Bonin Trench. This mode of faulting is dominant in regions south of the junction and characteristically the southwest block is downthrown. The other mode is represented by nearly vertical normal faults that strike parallel to the Japan Trench and indicate the northwest block is downthrown. This latter mode is dominant in regions north of the junction. The former mode may represent the accommodation of the slab geometry to the change in dip angle between the northeast Japan and Izu-Bonin arcs; the Izu-Bonin slab has a larger dip than that of the northeast Japan slab. The latter mode shows that normal faults parallel to the trench strike, usually seen in trench axis-outer rise regions, continue to occur further landward of the trench axis in the area just north of the junction. This might be caused by the loading of the Philippine Sea slab which penetrates between northeast Japan and the Pacific slab north of the Sagami Trough.Further north of these normal faults north of the junction, we find earthquakes which represent the relative motion between the Pacific and North American plates. This means that the Philippine Sea slab does not exist there. With the aid of earthquakes which represent the Philippine Sea-Pacific and Philippine Sea-North America motions located northwest of the normal faults, we can depict a possible area where the Philippine Sea slab exists north of the Sagami Trough.  相似文献   
74.
75.
We conducted hydrographic observations in 2002 to investigate the anticyclonic eddy that emerges every summer in Funka Bay, Hokkaido, Japan, and elucidate dynamical structure and wind-driven upwelling within the eddy. The anticyclonic eddy has a vertical scale of 32 m and is characterized by a strong baroclinic flow and a sharp pycnocline with a concave isopycnal structure. The sharp pycnocline occurs below a warm and relatively low-salinity water termed summer Funka Bay water (FS), which is formed by heating from solar radiation and dilution from river discharge in summertime Funka Bay. Flow of the anticyclonic eddy rotates as a rigid body at each layer, and the horizontal scale and rotation period of the eddy in the surface layer are about 15 km and 2.2 days, respectively. The dynamical balance of the anticyclonic eddy is well explained by the gradient flow balance. The contribution of centrifugal force to the gradient flow balance is about 27%. Therefore, the effect of the nonlinear term associated with centrifugal force cannot be neglected in considering the dynamics of the anticyclonic eddy in summertime Funka Bay. In addition, upwelling of subsurface water was observed in the surface layer of the central part of the eddy. The formation mechanism of this upwelling is consistent with interaction between horizontal uniform wind and the eddy. This upwelling is driven by upward Ekman pumping velocity related to the horizontal divergence of Ekman transport. In summertime Funka Bay, there are two wind effects that affect the anticyclonic eddy: a decay effect of the upwelling of subsurface water resulting from horizontal uniform wind (mainly northwesterly wind), and a maintenance or spin-up effect of horizontal non-uniform wind (mainly southerly–southeasterly seasonal wind) with negative wind stress curl.  相似文献   
76.
Abstract. The MITI Nankai Trough wells were drilled for exploration of methane-hydrate-bearing sediments in association with seismic inferred bottom simulating reflectors (BSRs). In this project, log data showed low velocity compressional-wave (P-wave) layers below methane-hydrate-bearing formations. Dipole shear sonic acoustic tools (DSI) could not acquire accurate compres-sional velocity in this zone, thus it was not possible to accurately correlate between logging, VSP and surface seismic profiles.
Small amount of gas was presumed to cause the problem in obtaining the low velocity P-wave data. VSP interval velocity data was used to assess the DSI inferred low-velocity layer, which showed lower values than the velocity of the drilling muds. Synthetic seismogram was created by VSP-compensated velocity to compare against corridor stack of VSP. As a result, the depths above and below the methane-hydrate-bearing interval were correlated with synthetic seismograms and reflectivity events on the VSP profiles. By using this correlation technique, distribution of methane-hydrate-bearing formations and free-gas-bearing formations can be determined.  相似文献   
77.
A central theme of the ongoing GEOTRACES program is to improve the understanding of processes occurring at ocean interfaces with continents, sediments, and ocean crust. In this context, we studied the distributions of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb around the Juan de Fuca Ridge (JdFR) in total dissolvable (td), dissolved (d), and labile particulate (lp) fractions, which represent a fraction in unfiltered samples, filtered samples through an AcroPak capsule filter, and the difference between td and d, respectively. Al and Fe were dominated by lp-species, while Ni, Zn, and Cd were dominated by d-species with undetectable amounts of lp-species. Major findings in this study are as follows: (1) The continental margin (CM) provided large sources of Al, Mn, Fe, and Co from the surface to ~2000 m in depth. The supply from CM caused high surface concentrations of dMn and dCo, a subsurface (100–300 m depth) maximum of dCo, and intermediate (500–2000 m depth) maxima of lpAl and lpFe. The supply of dFe from CM was ~10 times that from the high-temperature hydrothermal activity at station BD21, which is located at ~3 km from the Middle Valley venting site and ~ 200 km from Vancouver Island. (2) DPb was maximum at the top layer of North Pacific Intermediate Water, probably owing to isopycnal transport of anthropogenic Pb via advection of subducted surface waters. Although dCo and dPb had different sources in the upper water, they showed a strong linearity below 300 m (r 2 = 0.95, n = 38), indicating concurrent scavenging. (3) A high-temperature hydrothermal plume occurred at a depth of 2300 m at BD21, accounting for maxima of dAl, dMn, dFe, lpCu, and lpPb and a minimum of dCu. (4) Strong bottom maxima of lpAl, lpMn, lpFe, lpCo, and lpPb occurred above the abyssal plain at the western foot of the JdFR, indicating resuspension of sediments. However, bottom maxima of d-species were apparent only for dAl and dCu.  相似文献   
78.
Geochemistry of a sediment core from Lake Hovsgol, northwest Mongolia provides a continuous, 27-kyr history of the response of the lake and the surrounding catchment to climate change. Principle component (PC) analysis of 19 major and trace elements, total inorganic carbon (TIC), and total organic carbon (TOC) in the bulk sediment samples revealed that the 21 chemical components can be grouped into four assemblages—group-1: Na, Mg, Ca, Sr, and TIC, hosted in carbonate minerals (calcite, dolomite, and magnesian calcite); group-2: Ni, Cu, and Zn, recognized as biophilic trace metals, and TOC; group-3: Al, K, Ti, V, Fe, Rb, Cs, Ba, and Pb, composed of rock-forming minerals; and group-4: Cr, Mn, and As, sensitive to the redox condition of the sediment. The four element assemblages originated from three relevant processes. Group-1 and group-2 components are authigenic products and comprise the end member on the PC-1 score, whose variation reflects changes in the water volume, i.e. the balance between precipitation and evaporation (P/E). Group-3 components from detrital materials of the catchment contribute to the PC-2 score, whose variability indicates erosion/weathering intensity in the drainage basin, which might be controlled by the amount of vegetation cover associated with moisture change. The group-4 components of redox-sensitive elements contribute to the PC-3 score and are not an end member because of their small amount. The first two PC scores suggest a sequential record of paleo-moisture evolution in central Asia. The P/E balance in the Lake Hovsgol region, inferred from the PC-1 score, gradually increased during the glacial/interglacial transition. This resembles climate change of the North Atlantic region on the glacial–interglacial scale, but does not reflect the abrupt climate shifts such as the warm Bølling-Allerød and the cold Younger Dryas of the North Atlantic on the millennial scale. A periodic variation of ~8.7 kyr was observed in the PC-2 score profile of detrital input to Lake Hovsgol over the last glacial and Holocene. The decrease in detrital input coincided with the copious supply of moisture from the Asian monsoon regime and the North Atlantic westerly winds to the Baikal drainage basin, which includes Lake Hovsgol. Our geochemical records from Lake Hovsgol demonstrate that the climate system of interior continental Asia was strongly influenced by change on both Milankovitch and sub-Milankovitch scales.  相似文献   
79.
Micro‐X‐ray fluorescence scanning spectroscopy of marine and lake sedimentary sequences can provide detailed palaeoenvironmental records through element intensity proxy data. However, problems with the effects of interstitial pore water on the micro‐X‐ray fluorescence intensities have been pointed out. This is because the X‐ray fluorescence intensities are measured directly at the surfaces of split wet sediment core samples. This study developed a new method for correcting X‐ray fluorescence data to compensate for the effects of pore water using a scanning X‐ray analytical microscope. This involved simultaneous use of micro‐X‐ray fluorescence scanning spectroscopy and an X‐ray transmission detector. To evaluate the interstitial pore water content from the X‐ray transmission intensities, a fine‐grained sediment core retrieved from Lake Baikal (VER99‐G12) was used to prepare resin‐embedded samples with smooth surfaces and uniform thickness. Simple linear regression between the linear absorption coefficients of the samples and their porosity, based on the Lambert–Beer law, enabled calculation of the interstitial pore spaces and their resin content with high reproducibility. The X‐ray fluorescence intensities of resin‐embedded samples were reduced compared with those of dry sediment samples because of: (i) the X‐ray fluorescence absorption of resin within sediment; and (ii) the sediment dilution effects by resin. An improved micro‐X‐ray fluorescence correction equation based on X‐ray fluorescence emission theory considers the instrument's sensitivity to each element, which provides a reasonable explanation of these two effects. The resin‐corrected X‐ray fluorescence intensity was then successfully converted to elemental concentrations using simple linear regression between the data from micro‐X‐ray fluorescence scanning spectroscopy and from the conventional analyzer. In particular, the calculated concentration of SiO2 over the depth of the core, reflecting diatom/biogenic silica concentration, was significantly changed by the calibrations, from a progressively decreasing trend to an increasing trend towards the top of the core.  相似文献   
80.
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号