首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   5篇
  国内免费   5篇
大气科学   3篇
地球物理   38篇
地质学   41篇
海洋学   19篇
天文学   16篇
综合类   3篇
自然地理   6篇
  2024年   2篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2005年   11篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1998年   3篇
  1997年   3篇
  1995年   1篇
  1993年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1979年   1篇
排序方式: 共有126条查询结果,搜索用时 0 毫秒
21.
Shear-wave splitting from local deep earthquakes is investigated to clarify the volume and the location of two anisotropic bodies in the mantle wedge beneath central Honshu, Japan. We observe a spatial variation in splitting parameters depending on the combination of sources and receivers, nearly N–S fast in the northern region, nearly E–W fast in the southern region and small time delays in the eastern region. Using forward modelling, two models with 30 and 10 per cent anisotropy are tested by means of a global search for the locations of anisotropic bodies with various volumes. The optimum model is obtained for 30 per cent anisotropy, which means a 5 per cent velocity difference between fast and slow polarized waves. The northern anisotropic body has a volume of 1.00° (longitude) × 0.5° (latitude) × 75 km (depth), with the orientation of the symmetry axis being N20°E. The southern anisotropic body has a volume of 1.25° × 1.25° × 100 km with the symmetry axis along N95°E. Our results show that the anisotropic bodies are located in low-velocity and low- Q regions of the mantle. This, together with petrological data and the location of volcanoes in the arc, suggests that the possible cause of the anisotropy is the preferred alignment of cracks filled with melt.  相似文献   
22.
23.
In and around the beds of vesicomyid clam (Calytogena soyoae) located off Hatsushima Island in Sagami Bay, central Japan, hydrogen sulfide concentration in bottom water and interstitial water was measured every 10 cm from just above seafloor to 40 cm deep usingin situ separative dialysis bags. While hydrogen sulfide over 0.01 mmol/kg was not measured from the seawater just above the dense clam beds, the concentration of hydrogen sulfide increased rapidly below 10 cm deep. The results indicate that the habit of the clam is correlated with high concentration of hydrogen sulfide contained in pore waters of sediments between depths of 10 and 20 cm from the bottom surface. Concentrations of hydrogen sulfide ranging from approximately 0.05 mmol/kg to 0.6 mmol/kg might be suitable requirement for the habitat ofC. soyoae.  相似文献   
24.
In drylands, water deficit is the primary factor limiting plant growth. In the present study, surface energy balance and plant growth (above‐ground and below‐ground biomass) were measured continuously during the 2002 growing season in semiarid grassland in the northern part of Kazakhstan, Central Asia. Although there was above normal total rainfall during the 2002 growing season (May–November; 244 mm over 183 days), there was a dry period during July and August. Evaporative water was effectively supplied by precipitation and surface soil moisture during the wet season (May and June), during which time above‐ground biomass increased. During the early stages of the dry period, mature plants were likely to tap deeper sources of soil moisture, representing stored snowmelt water. As the soil moisture content decreased during the summer dry period due to the high levels of evapotranspiration and lack of precipitation, the evaporative fraction and above‐ground biomass rapidly decreased, whereas the below‐ground biomass increased. These results suggest that in summer, soil moisture acts to store water, and that soil moisture is essential for plant growth as a direct source of water during the dry period in natural grasslands in the Kazakhstan steppe. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
25.
We have studied magnetic fractions of five acapulcoites, three lodranites, and two winonaites to investigate chemical compositions of their precursor materials and metallic partial melting processes occurring on their parent bodies. One winonaite metal is similar in composition to low Au, low Ni IAB iron subgroup, indicating genetic relationship between them. Magnetic fractions of chondrule‐bearing acapulcoite and winonaite have intermediate chemical compositions of metals between H chondrites and EL chondrites. This fact indicates that the precursor materials of acapulcoite–lodranites and winonaites were similar to H and/or EL chondrites in chemical compositions. Magnetic fractions in acapulcoite–lodranites have a large variety of chemical compositions. Most of them show enrichments of W, Re, Ir, Pt, Mo, and Rh, and one of them shows clear depletion in Re and Ir relative to those of chondrule‐bearing acapulcoite. Chemical compositional variations among acapulcoite–lodranite metals cannot be explained by a single Fe‐Ni‐S partial melting event, but a two‐step partial melting model can explain it.  相似文献   
26.
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the “memory” of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.  相似文献   
27.
28.
River runoff from the four largest Siberian river basins (the Ob, Yenisei, Lena, and Kolyma) considerably contributes to freshwater flux into the Arctic Ocean from the Eurasian continent. However, the effects of variation in snow cover fraction on the ecohydrological variations in these basins are not well understood. In this study, we analysed the spatiotemporal variability of the maximum snow cover fraction (SCFmax) in the four Siberian river basins. We compared the SCFmax from 2000 to 2016 with data in terms of monthly temperature and precipitation, night-time surface temperatures, the terrestrial water storage anomaly (TWSA), the normalised difference vegetation index (NDVI), and river runoff. Our results exhibit a decreasing trend in the April SCFmax values since 2000, largely in response to warming air temperatures in April. We identified snowmelt water as the dominant control on the observed increase in the runoff contribution in May across all four Siberian river basins. In addition, we detected that the interannual river runoff was predominantly controlled by interannual variations in the TWSA. The NDVI in June was strongly controlled by the timing of the snowmelt along with the surface air temperature and TWSA in June. The rate of increase in the freshwater flux from the four Siberian rivers decreased from 2000 to 2016, exhibiting large interannual variations corresponding to interannual variations in the TWSA. However, we identified a clear increase trend in the freshwater flux of ~4 km3/year when analysing the long-term 39-year historical record (1978–2016). Our results suggest that continued global warming will accelerate the transition towards the earlier timing of snowmelt and spring freshwater flux into the Arctic Ocean. Our findings also highlight the effects of earlier snowmelt on ecohydrological changes in the Northern Hemisphere.  相似文献   
29.
We analyze high sampling waveforms of the initial part of P-wave recorded at the 1800-m-deep borehole seismographs at the Nojima fault from December 1999 to May 2000 to clarify the initial rupture process of microearthquakes. We select 12 events with high S/N, whose magnitudes range from −0.3 to 2.2 and hypocentral distances from 1 to 11 km. We adopt the two different source models by Sato and Hirasawa (1973) and by Sato and Kanamori (1999). The former (model by Sato and Hirasawa (SH model)) generates only a ramp-like onset of velocity pulse. The later (model by Sato and Kanamori (SK model)) is able to generate a weak initial phase that is controlled by a trigger factor and the length of pre-existing crack. We perform the waveform inversion to estimate the optimum source parameters of each model. Waveforms of 5 of the 12 events are clearly reproduced by both SH model and SK model with a large trigger factor and a small length of pre-existing crack. The others are explained by not SH model but only SK model with a small trigger factor and a large length of the pre-existing crack, indicating that the weak initial phase is a nucleation phase and reflects the source process. These seven events satisfy roughly a relation that a large event has a large length of the pre-existing crack; the final crack length is proportional to the length of the pre-existing crack.  相似文献   
30.
从节旋藻属5个品系和螺旋藻属1个品系中克隆了hoxY基因的部分序列.序列长度都是479bp.在节旋藻中该基因GC含量为46.0%~46.6%,螺旋藻中为43.5%.节旋藻各品系间序列的相似性介于93.7%~100%,明显高于节旋藻属和螺旋藻属间的序列相似性(69.5%~72.2%).2个属中镍铁氢化酶小亚基HoxY氨基酸序列的比较也表明螺旋藻和节旋藻之间存在较大差异.利用MEGA2通过比较核酸序列构建了系统树,表明螺旋藻和节旋藻属处于不同的分枝.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号