首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  国内免费   1篇
地球物理   13篇
地质学   4篇
海洋学   5篇
天文学   6篇
  2018年   1篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
The use of loose spoils on steep slopes for surface coal mining reclamation sites has been promoted by the US Department of Interior, Office of Surface Mining for the establishment of native forest, as prescribed by the Forest Reclamation Approach (FRA). Although low‐compaction spoils improve tree survival and growth, erodibility on steep slopes was suspected to increase. This study quantified a combined KC factor (combining the effects of the soil erodibility K factor and cover management C) for low compaction, steep‐sloped (>20°) reclaimed mine lands in the Appalachian region, USA. The combined KC factor was used because standard Unit Plot conditions required to separate these factors, per Revised Universal Soil Loss Equation (RUSLE) experimental protocols, were not followed explicitly. Three active coal mining sites in the Appalachian region of East Tennessee, each containing four replicate field plots, were monitored for rainfall and sediment yields during a 14‐month period beginning June 2009. Average cumulative erosivity for the study sites during the monitoring period was measured as 5248.9 MJ·mm·ha?1·h?1. The KC ranged between 0.001 and 0.05 t·ha·h·ha?1·MJ?1·mm?1, with the highest values occurring immediately following reclamation site construction as rills developed (June – August 2009). The KC for two study sites with about an 18–20 mm spoil D84 were above 0.01 t·ha·h·ha?1·MJ?1·mm?1 during rill development, and below 0.003 t·ha·h·ha?1·MJ?1·mm?1 after August 2009 for the post‐rill development period. The KC values for one site with a 40 mm spoil D84 were never above 0.008 t·ha·h·ha?1·MJ?1·mm?1 and also on average were lower, being more similar to the other two sites after the rill development period. Based on an initial KC factor (Ke) measured during the first few storm events, the average C factor (Ce) was estimated as 0.58 for the rill development period and 0.13 for the post‐rill development period. It appears that larger size fractions of spoils influence KC and Ce factors on low‐compaction steep slopes reclamation sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
Oxygen self diffusion rates were determined in quartz samples exchanged with18O-enriched CO2 between 745 and 900°C and various pressures, and the diffusion profiles were measured using an ion microprobe. The activation energy (Q) and preexponential factor (D0) at P(CO2) = P(tot) = 100 bar, for diffusion parallel to the c-axis are 159 ( ± 13) kJ/g atom and 2.10 (+0.75/ −0.55) × 10−8 cm2/s. This rate is approximately 100 times slower than that obtained from hydrothermal experiments and 100 times faster than a previous 1-bar quartz-O2 exchange experiment. The oxygen diffusion rate measured at 0.6 bar, 888°C, and at 900°C in vacuum is in agreement with the previous 1-bar exchange experiments with18O2. The effect of higher CO2 pressures is small. At 900°C, the diffusion rate exchanged with CO2 is = 2.35 × 10−15 cm2/s at 100 bar, 2.24 × 10−15 cm2/s at 3.45 kbar and 8.13 × 10−15 cm2/s at 7.2 kbar.There is probably a diffusing species, other than oxygen, that enhances the oxygen diffusion rate in these quartz-CO2 systems, relative to that occurring at very low pressures or in a vacuum. The effect of this diffusing species, however, is not as strong as that associated with H2O. Preserved oxygen isotope fractionations between coexisting minerals in a slowly cooled, high-grade metamorphic terrane will vary depending upon whether a water-rich phase was present or not. Closure temperatures will be approximately 100°C higher in rocks where no water-rich phase was present during cooling. The measured fractionations between coexisting minerals in metamorphic rocks may potentially be used as a sensor of water presence during retrogression.  相似文献   
3.
RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation (USLE)/RUSLE/RUSLE2 models proven to provide robust estimates of average annual sheet and rill erosion from a wide range of land use, soil, and climatic conditions. RUSLE2's capabilities have been expanded over earlier versions using methods of estimating time‐varying runoff and process‐based sediment transport routines so that it can estimate sediment transport/deposition/delivery on complex hillslopes. In this report we propose and evaluate a method of predicting a series of representative runoff events whose sizes, durations, and timings are estimated from information already in the RUSLE2 database. The methods were derived from analysis of 30‐year simulations using a widely accepted climate generator and runoff model and were validated against additional independent simulations not used in developing the index events, as well as against long‐term measured monthly rainfall/runoff sets. Comparison of measured and RUSLE2‐predicted monthly runoff suggested that the procedures outlined may underestimate plot‐scale runoff during periods of the year with greater than average rainfall intensity, and a modification to improve predictions was developed. In order to illustrate the potential of coupling RUSLE2 with a process‐based channel erosion model, the resulting set of representative storms was used as an input to the channel routines used in Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) to calculate ephemeral gully erosion. The method was applied to a hypothetical 5‐ha field cropped to cotton in Marshall County, MS, bisected by a potential ephemeral gully having channel slopes ranging from 0·5 to 5% and with hillslopes on both sides of the channel with 5% steepness and 22·1 m length. Results showed the representative storm sequence produced reasonable results in CREAMS indicating that ephemeral gully erosion may be of the same order of magnitude as sheet and rill erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
4.
Celestial Mechanics and Dynamical Astronomy - Recent papers by Greenberg and Sinclair have lent support to Goldreich's tidal hypothesis which provides an explanation for the existence of...  相似文献   
5.
We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >106ml−1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.  相似文献   
6.
Gulf Stream frontal disturbances cause nutrient-rich waters to frequently upwell and intrude onto the southeastern United States continental shelf between Cape Canaveral, Florida and Cape Hatteras, North Carolina. Phytoplankton response in upwelled waters was determined with three interdisciplinary studies conducted during April 1979 and 1980, and in summer 1978. The results show that when shelf waters are not stratified, upwelling causes productive phytoplankton (diatom) blooms on the outer shelf. Phytoplankton production averages about 2 g C m−2 d−1 during upwelling events, and ‘new’ production is 50% or more of the total. When shelf waters are stratified, upwelled waters penetrate well onto the shelf as a subsurface intrusion in which phytoplankton production averages about fives times higher than the nutrient-depleted overlying mixed layer. Phytoplankton within the intrusion deplete upwelled NO3 in about 7 to 10 days, at which point no further net increase in phytoplankton biomass occurs.Current meter records show that upwelling occurs roughly 50% of the time on the outer shelf during November to April (shelf not stratified), and we estimate that seasonal primary production in upwelled waters is 175 g C m−2 6 months−1 of which at least 50% is ‘new’ production. More than 90% of outer shelf primary and ‘new’ production occurs during upwelling and thus upwelling is the dominant process affecting primary productivity of the outer shelf. Our seasonal estimates of outer shelf primary and ‘new’ production are, respectively, three and ten times higher than previous estimates that did not account for upwelling.  相似文献   
7.
During July and August 1981 subsurface intrusion of upwelled nutrient-rich Gulf Stream water was the dominant process affecting temporal and spatial changes in phytoplankton biomass and productivity of the southeastern United States continental shelf between 29 and 32°N latitude. Intruded waters in the study area covered as much as 101 km including virtually all of the middle and outer shelf and approximately 50% of the inner shelf area.Within 2 weeks following a large intrusion event in late July, middle shelf primary production and Chl a reached 3 to 4 gC m d−1 and 75 mg m, respectively. At the peak of the bloom 80% of the water column primary production occurred below the surface mixed-layer, and new primary production (i.e., NO3-supported) exceeded 90% of the total. Chl a-normalized photosynthetic rates were very high as evidenced by high mean assimilation number (15.5 mg C mg Chl a−1 h−1), high mean α (14 mg C mg Chl a−1 Ein−1 m), and no photoinhibition. As a result of the high photosynthetic rates, mean light-utilization index (Ψ) was 2 to 3 times higher than reported for temperature sub-arctic and arctic waters.The results imply a seasonal (June to August) middle shelf production of 150 g C m−1, about 15% higher than previous estimates of annual production on the middle shelf. Intrusions of the scale we observed in 1981 may not occur every summer. However, when such events do occur, they are by far the most important processes controlling summer phytoplankton dynamics of the middle and outer shelf and of the inner shelf in the southern half of the study area.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号