首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   3篇
  国内免费   2篇
大气科学   2篇
地球物理   38篇
地质学   24篇
海洋学   30篇
天文学   26篇
综合类   2篇
自然地理   9篇
  2024年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2009年   9篇
  2008年   18篇
  2007年   8篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   7篇
  2002年   8篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
41.
Algae growing in an enclosed sea may inhibit eutrophication because they absorb nutrients in the water. However, dead algae often cause anaerobic conditions in the water just above and on sediment after they are deposited on the bottom. We found that Stichopus japonicus inhibited the anaerobic processes coupling water sulfite production in sediment. The present study investigates whether S. japonicus inhibits algal flourish and influences sediment properties such as organic matter contents. Aquarium experiments were carried out at Komatsushima port in Tokushima Prefecture, western Japan. The aquaria used in the experiments were supplied with water directly from the adjacent sea (6 L/min), laid with sand of 10 cm depths, and lighted at 12 h intervals. Six aquaria each containing a sea cucumber from Komatsushima port and six aquaria without any were used in the experiments. Water temperature ranged between 9 and 15 degrees C during December 2000 and April 2001. Salinity ranged between 32 per thousand and 34 per thousand. Algae began to cover the bottom of the aquaria without S. japonicus after 2 weeks, whereas no growth was evident in the aquaria containing sea cucumbers. Chlorophyll a concentration in the surface sediment of the aquaria with S. japonicus (6.1+/-3.6 microg/g, mean S.D.+/-standard deviation) was significantly lower than that without it (60+/-17 microg/g, U-test, p<0.05). Phaeophytin concentration in the surface sediment of the aquaria with S. japonicus (0.9+/-0.09 microg/g) was also significantly lower than that without it (4.5+/-1.0 microg/g, U-test, p<0.05). TOC concentration in the surface sediment of the aquaria with S. japonicus (2.6+/-1.3 microg/g) was slightly lower than that without it (4.0+/-1.2 microg/g). These results showed that algal biomass and organic matter concentration of the bottom were decreased in the presence of S. japonicus. Therefore, S. japonicus inhibits algal bloom and decrease the contents of organic matter deposited on the bottom of enclosed sea areas.  相似文献   
42.
Settling particles were collected at 1,460 m and 3,760 m depth in the Antarctic Ocean with sediment traps of time series type. The total deployment period of 40 days was divided into four terms of 10 days each. Seawater samples were collected both at deployment and retrieval of the traps at each site. During the 42 days the concentration of silicate in the surface water decreased by 32%, whereas those of nitrate and phosphate decreased by only 4–5%. The total particulate flux in the Antarctic Ocean is the largest among those hitherto observed in the world ocean. The time variation of the particulate flux at 1,460 m depth almost coincided with that at 3,760 m. The settling particles were comprised roughly of 80% biogenic silica, 15% organic matter and 5% other substances including sea salt. The clay fraction was only 0.05% at 1,460 m depth. The settling flux of biogenic silica agrees fairly well with the calculated rate of change in the concentration of silicate in the surface 100 m. Thus it is concluded that preferential propagation of diatoms reduces the concentration of silicate prior to other nutrients in the Antarctic Ocean.  相似文献   
43.
We analyzed gravity data obtained in Juneau and global positioning system (GPS) data obtained from three PBO sites in southeastern Alaska (SE-AK), which are part of a US research facility called ‘EarthScope’, and we compared the obtained tidal amplitudes and phases with those estimated from the predicted tides including both effects of the body tide and ocean tide. Global tide models predict the ocean tides in this region of complex coastline and bathymetry. To improve the accuracy of prediction, we developed a regional ocean tide model in SE-AK.Our comparison results suggest: (1) by taking into account the ocean tide effect, the amplitude differences between the observation and the predicted body tide is remarkably reduced for both the gravity and displacement (e.g. for the M2 constituent, 8.5–0.3 μGal, and 2.4–0.1 cm at the AB50 GPS site in Juneau in terms of the vector sum of three components of the north–south, east–west and up–down), even though the ocean tide loading is large in SE-AK. (2) We have confirmed the precise point positioning (PPP) method, which was used to extract the tidal signals from the original GPS time series, works well to recover the tidal signals. Although the GPS analysis results still contain noise due to the atmosphere and multipath, we may conclude that the GPS observation surely detects the tidal signals with the sub-centimeter accuracy or better for some of the tidal constituents. (3) In order to increase the accuracy of the tidal prediction in SE-AK, it is indispensable to improve the regional ocean tide model developed in this study, especially for the phase.  相似文献   
44.
The Khoy ophiolitic complex in Northwestern Iran is a part of the Tethyan ophiolite belt, and is divided into two sections: the Eastern ophiolite in Qeshlaq and Kalavanes (Jurassic–Cretaceous) and the Western ophiolite in Barajouk, Chuchak and Hessar (Late Cretaceous). Our chromitites can be clearly classified into two groups: high‐Al chromitites (Cr# = 0.38–0.44) from the Eastern ophiolite, and high‐Cr chromitites (Cr# = 0.54–0.72) from the Western ophiolite. The chromian spinels in high‐Al chromitite include primary mineral inclusions mainly as Na‐bearing diopside and pargasite with subordinate rutile and their formation was probably related to reaction between a MORB (mid‐ocean‐ridge basalt)‐like melt with depleted harzburgite, possibly in a back‐arc setting. Their host harzburgites contain clinopyroxene with higher contents of Al2O3, Na2O, Cr2O3, and TiO2 relative to Western harzburgites and are possibly residue after moderate partial melting (~15 %) whereas the Western harzburgite is residue after high partial melting (~25 %). The chromian spinel in the Western Khoy chromitites contains inclusions such as clinopyroxene, olivine and platinum group mineral‐bearing sulfides. These Western chromitites were possibly formed at two stages during arc growth and are divided into the moderately high‐Cr# chromitites (Barajouk and Hessar) and the high‐Cr# chromitites (Chuchak A and C). The former crystallized from island‐arc‐tholeiite (IAT) melts during reaction with the host depleted harzburgites, whereas the latter crystallized from boninitic melts (second stage melt) during reaction with highly depleted harzburgite in a supra‐subduction‐zone environment. Based on the mineral chemistry of chromian spinels, pyroxenes, and mineral inclusions, the chromitites and the host peridotites from the Eastern and Western Khoy ophiolites were formed in a back‐arc basin and arc‐related setting, respectively. The Khoy ophiolitic complex is a tectonic aggregate of the two different ophiolites formed in two different tectonic settings at different ages.  相似文献   
45.
46.
It is well known that heavy oil (HO) on the sea surface causes serious problems in the aquatic environment. In particular, some species of teleosts which develop on the sea surface are thought to be affected by the HO which flows out from tankers or coastal industry. However, the toxicological effects of HO are not fully understood. We performed exposure experiments using the Pleuronectiformean fish, spotted halibut (Verasper variegatus), which is an important fishery resource in Japan. In course of the development, HO-exposed embryos showed remarkable delay in developmental processes including somite formation. We further observed abnormal development of the head morphology. Notably, treated embryos had relatively small eyes and craniofacial structures. These findings strongly suggest that HO seriously affects the cell proliferation and differentiation of the embryo. In addition, HO-exposed embryos showed abnormal neuronal development. We also performed the exposure in the larval stage. Treatment of post-hatching larvae with HO resulted in significantly greater mortality compared with controls. Through these observations, we finally conclude that HO is strongly toxic to halibut in their early life stages.  相似文献   
47.
We analyzed noble gases in nine individual chondrules, an assemblage of small chondrules, and four whole‐rock samples of the Allende CV3 chondrite. Major elements were also determined for five chondrules. The cosmic ray exposure ages are calculated from cosmogenic 3He to be 5.17 ± 0.38 and 5.15 ± 0.25 Myr for the averages of the chondrules and whole rocks, respectively, showing no significant pre‐exposure evidence for the studied chondrules. Large amounts of 36Ar, 80,82Kr, and 128Xe produced by neutron capture are observed in most samples; the abundances of these nuclides are correlated among the samples. The epithermal neutron flux and neutron slowing down density are calculated based on [80Kr]n, from which a sample depth of about 30 cm can be calculated. The measured chondrules contain variable amounts of radiogenic 129Xe. The abundance ratios of radiogenic 129Xe to neutron capture–produced 128Xe are rather constant among the studied chondrules; four chondrules give more precise ratios at the high‐temperature fractions, ranging from 1920 ± 80 to 2280 ± 140, which corresponds to a time difference of 3.9 ± 2.4 Myr. It is noticeable that most chondrules also contain 244Pu‐derived fission Xe. The average 244Pu/238U ratio for nine chondrules is 0.0069 ± 0.0018, which agrees well with the preferred ratio reported for chondrites.  相似文献   
48.
The objective of this study is to elucidate the burrow structure and to clarify the role of burrows in material cycle in the tidal flat. In our work, we focused on the dominant species in muddy tidal flat, crab Macrophthalmus japonicus.Burrow structure of Macrophthalmus japonicus was investigated on a Katsuura river tidal flat in Tokushima prefecture, Japan, using in situ resin casting. Sampling was conducted in August 2006, and a total of 48 burrow casts were obtained. Burrows consisted mainly of J-shaped structures (98%) while the rest belonged to U-shaped structures (2%). The maximum measured burrow volume was 120 cm3 and wall surface area was 224 cm2, while maximum burrow length and depth were 23.2 cm and 16.5 cm, respectively. Burrow volume and surface area were strongly correlated with carapace width of M. japonicus. Investigation of the individual number of M. japonicus in 13 quadrats (50 × 50 × 20 cm) was conducted using 2 mm sieve. The number of M. japonicus was 15–31 ind./m2. Using cohort analysis we estimated that surface area of burrows was 0.07–0.15 m2/m2.CO2 emission rate was measured at the surface sediment during the period from June to December 2008. Results varied from 13.8 ± 2.2 to 49.4 ± 3.2 mg CO2/m2/h, and organic carbon decomposition was 3.8 ± 0.6–13.5 ± 0.9 mg C/m2/h. This leads the increase of organic carbon decomposition by 1.1 times, because of the expansion of the tidal flat surface area by burrowing activity. Organic carbon decomposition in burrow walls therefore contributed to organic matter decomposition in the tidal flat. These results indicated that in situ activities of Macrophthalmus japonicus significantly influence the material cycle and it is important to consider the existence of burrow in order to understand the fluxes of materials and to evaluate the purification function of the tidal flat.  相似文献   
49.
The food habits of the dominant myctophid Stenobrachius leucopsarus were examined in the central basin of the Bering Sea in relation to oceanographic conditions, in summer 2002 and 2003 and spring 2006. S. leucopsarus exhibited an ontogenetic and seasonal dietary shift. In spring, small fish (≤40 mm) preyed mainly on Neocalanus flemingeri/plumchrus whereas large fish fed mainly on Neocalanus cristatus. In summer, small fish preyed mainly on Metridia pacifica whereas large fish fed mainly on euphausiids (Thysanoessa spp.). In the summer of 2003, when water temperature in the epipelagic layer (≤100 m) was warmer, reflecting the prevalence of the Alaskan Stream, small-sized S. leucopsarus showed a higher stomach content index, perhaps reflecting the greater abundance of M. pacifica. Thus, the present study shows that the physical variability in the epipelagic layer affects not only diets but also feeding performance of micronekton.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号