首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   11篇
  国内免费   3篇
测绘学   3篇
大气科学   18篇
地球物理   111篇
地质学   105篇
海洋学   82篇
天文学   112篇
综合类   2篇
自然地理   16篇
  2021年   7篇
  2020年   6篇
  2019年   12篇
  2018年   2篇
  2017年   13篇
  2016年   7篇
  2015年   9篇
  2014年   24篇
  2013年   14篇
  2012年   15篇
  2011年   16篇
  2010年   23篇
  2009年   23篇
  2008年   24篇
  2007年   18篇
  2006年   27篇
  2005年   14篇
  2004年   14篇
  2003年   8篇
  2002年   16篇
  2001年   12篇
  2000年   9篇
  1999年   9篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   7篇
  1993年   9篇
  1992年   4篇
  1991年   2篇
  1990年   7篇
  1989年   2篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1977年   6篇
  1975年   2篇
  1974年   4篇
  1973年   5篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1966年   1篇
  1963年   1篇
排序方式: 共有449条查询结果,搜索用时 15 毫秒
441.
In the southwestern Okhotsk Sea, the cold water belt (CWB) is frequently observed on satellite images offshore of the Soya Warm Current flowing along the northeastern coast of Hokkaido, Japan, during summertime. It has been speculated that the CWB is upwelling cold water that originates from either subsurface water of the Japan Sea off Sakhalin or bottom water of the Okhotsk Sea. Hydrographic and chemical observations (nutrients, humic-type fluorescence intensity, and iron) were conducted in the northern Japan Sea and southwestern Okhotsk Sea in early summer 2011 to clarify the origin of the CWB. Temperature–salinity relationships, vertical distributions of chemical components, profiles of chemical components against density, and the (NO3 + NO2)/PO4 relationship confirm that water in the CWB predominantly originates from Japan Sea subsurface water.  相似文献   
442.
Oshika  Miki  Tachibana  Yoshihiro  Nakamura  Tetsu 《Climate Dynamics》2015,45(5-6):1355-1366
Climate Dynamics - On the basis of a 51-year statistical analysis of reanalysis data, we propose for the first time that the positive phase of the Western Pacific (WP) pattern in the winter is...  相似文献   
443.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
444.
We modeled the possible parent bodies of Itokawa, which was heated within by the decay energy of 26Al. Based on mineralogic studies of dust particles derived from Itokawa by the Hayabusa spacecraft, it appeared that they were thermally metamorphosed at a peak temperature of 800 °C, and kept at 700 °C or higher at 7.6 Myr after CAI formation. Our numerical results show that the parent bodies of Itokawa would have been larger than 20 km in radius and accreted at a period between 1.9 and 2.2 Myr after CAI formation, to satisfy mineralogic and isotopic evidence from dust particles.  相似文献   
445.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
446.
Assessing factors that influence groundwater levels such as land use and pumping strategy, is essential to adequately manage groundwater resources. A transient numerical model for groundwater flow with infiltration was developed for the Tedori River alluvial fan (140 km2), Japan. The main water input into the groundwater body in this area is irrigation water, which is significantly influenced by land use, namely paddy and upland fields. The proposed model consists of two models, a one-dimensional (1-D) unsaturated-zone water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Numerical simulation of groundwater flow from October 1975 to November 2009 was performed to validate the model. Simulation revealed seasonal groundwater level fluctuations, affected by paddy irrigation management. However, computational accuracy was limited by the spatiotemporal data resolution of the groundwater use. Both annual groundwater levels and recharge during the irrigation periods from 1975 to 2009 showed long-term decreasing trends. With the decline in rice-planted paddy field area, groundwater recharge cumulatively decreased to 61 % of the peak in 1977. A paddy-upland crop-rotation system could decrease groundwater recharge to 73–98 % relative to no crop rotation.  相似文献   
447.
An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al2O3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.  相似文献   
448.
Air entrainment in fragmented magmas controls the dynamics of volcanic eruptions. Pyroclast oxidation kinetics may be applied to quantify the degree of magma–air interaction. Pyrrhotite (Po) in volcanic rocks is often oxidized to form magnetite (Mt) and hematite (Hm), and its reaction mechanisms are well constrained. To test utilizing Po oxidation as a marker for magma–air interactions, we compared the occurrence of Po oxidation products from three different eruption styles during the Sakurajima 1914–1915 eruption. Pumices from the Plinian eruption include columnar-type Fe oxides (Mt with subordinate width of Hm) often accompanied by relict Po. This columnar type is also found in clastogenic lava, where it is almost completely oxidized to Hm. The effusive lava contains framboidal aggregates of subhedral to anhedral Mt crystals without Hm. The formation mechanisms of columnar and framboidal Fe oxides were estimated. The columnar type Fe oxides were formed syn-eruptively through gaseous reactions, as opposed to the melt in a magma chamber, as demonstrated by the Ti-free nature of the columnar Mt and its synchronous oxidation to Hm. By contrast, the framboidal type was formed in a melt with decreasing fS2. The calculation of Hm growth in a conductively cooling pumice clast constrains the surface temperature of pumice in the eruption column. The paragenesis and oxidation degree of Po and Fe oxides are consistent with the eruption processes in terms of magma fragmentation, air entrainment, and welding, and can, therefore, be a responsive marker for the magma–air interaction.  相似文献   
449.
The paper presents new data on the isotopic age and chemical composition of volcanic rocks from the Tytyl’veem and Mangazeika basins of western Chukotka superposed on Mesozoides of the Verkhoyansk–Chukotka Tectonic Region. The results of SIMS U–Pb zircon dating (121.4 ± 2.8 and 118.0 ± 2.0 Ma) corroborate the Aptian age of the Tytyl’veem Formation. This age, in turn, indicates its formation after closure of the South Anyui ocean (Neocomian), but before origination of the Okhotsk–Chukotka Belt (Albian–Campanian). Post-collisional Aptian igneous rocks are widespread in the northern Verkhoyansk–Chukotka Tectonic Region; the legth of the corresponding igneous province is no less than 1400 km. In geochemical characteristics, the post-collisional volcanic rocks occurring in Western Chukotka are similar with the rocks from Andean-type igneous belts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号