首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   10篇
  国内免费   3篇
测绘学   3篇
大气科学   18篇
地球物理   111篇
地质学   106篇
海洋学   82篇
天文学   112篇
综合类   2篇
自然地理   16篇
  2021年   7篇
  2020年   6篇
  2019年   12篇
  2018年   2篇
  2017年   13篇
  2016年   7篇
  2015年   9篇
  2014年   24篇
  2013年   14篇
  2012年   15篇
  2011年   16篇
  2010年   23篇
  2009年   23篇
  2008年   24篇
  2007年   18篇
  2006年   27篇
  2005年   14篇
  2004年   15篇
  2003年   8篇
  2002年   16篇
  2001年   12篇
  2000年   9篇
  1999年   9篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   7篇
  1993年   9篇
  1992年   4篇
  1991年   2篇
  1990年   7篇
  1989年   2篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1977年   6篇
  1975年   2篇
  1974年   4篇
  1973年   5篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1966年   1篇
  1963年   1篇
排序方式: 共有450条查询结果,搜索用时 10 毫秒
191.
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   
192.
Weather Research and Forecasting atmosphere model and Finite Volume Community Ocean Model were for the first time used under the pseudo-climate simulation approach, to study the parameters of an extreme storm in the Baltic Sea area. We reconstructed the met-ocean conditions during the historical storm Gudrun (which caused a record-high +275 cm surge in Pärnu Bay on 9 January 2005) and simulated the future equivalent of Gudrun by modifying the background conditions using monthly mean value differences in sea surface temperature (SST), atmospheric air temperature and relative humidity from MIROC5 in accordance with the IPCC scenarios RCP4.5 and RCP8.5 for 2050 and 2100. The simulated storm route and storm surge parameters were in good accordance with the observed ones. Despite expecting the continuation of recently observed intensification of cyclonic activity in winter months, our numerical simulations showed that intensity of the strongest storms and storm surges in the Baltic Sea might not increase by the end of twenty-first century. Unlike tropical cyclones, which derive their energy from the increasing SST, the extratropical cyclones (ETCs) harvest their primary energy from the thermal differences on the sides of the polar front, which may decrease if the Arctic warms up. For climatological generalizations on future ETCs, however, it is necessary to re-calculate a larger number of storms, including those with different tracks and in different thermal conditions.  相似文献   
193.
194.
Contribution of slab-fluid in arc magmas beneath the Japan arcs   总被引:5,自引:0,他引:5  
Identifying the amount and composition of slab-derived fluid and its spatial variation is key to quantifying fluid processes in subduction zones. Based on the isotopic systematics of arc lavas, we found regional variations over the Japan arcs in terms of the amount and composition of slab-derived fluid added to the melting source region. The average amounts of slab-derived fluid differ among the arcs: 2.6 wt.% for Central Japan, 0.69 wt.% for Ryukyu, 0.17 wt.% for NE Japan, and 0.12 wt.% for both Kurile and Izu–Bonin. These differences may be attributed to the arc setting (oceanic or continental) and the geometry of the slabs. Contribution of sediment involved in the slab-derived fluid is dominant in NE Japan compared to the Izu–Bonin and Central Japan arcs. This could be attributed to mechanical features such as fractures near the subducting plate surface, in addition to the arc setting and the slab geometry. Therefore, the amount and composition of slab-derived fluid are thought to be controlled not only by the thermal conditions, but also by the tectonic and mechanical features around the subduction zone. On top of the variability of slab-derived fluid, the mantle wedge shows the regional variation in terms of proportion of the Pacific-type and Indian-type MORB-source mantle components, which also contributes to the compositional variations of arc magmas.  相似文献   
195.
Large, shallow‐water lakes located on floodplains play an important role in creating highly productive ecosystems and are prone to high concentrations of suspended solids due to sediment resuspension. In this study, the aim was to determine the dominant processes governing the total suspended solid (TSS) concentration at the water surface in Tonle Sap Lake, Cambodia, which is a large, shallow‐water lake. Satellite remotely sensed daily reflectance data from 2003 to 2017 were used. Seasonal changes in TSS concentration indicated that bottom sediment resuspension during dry seasons was mostly caused by wind and the TSS concentration was closely correlated with the water depth of the lake. The TSS concentration during flood periods was controlled by both wind and inflow currents from the Tonle Sap River. Additionally, we confirmed that surface/subsurface flow with a low TSS concentration from forests on the floodplain lowered the TSS concentration year round, except during August and September. This fact implied that the floodplain forest area decrease may increase the lake TSS concentration. An analysis of the long‐term changes in TSS indicated that a decrease in the water level during flood periods resulted in the high TSS concentrations observed during the subsequent dry periods. Therefore, climate change and water resource development, which are likely to cause water level reductions in the Mekong River during flood periods, may increase the TSS concentration in Tonle Sap Lake, particularly during the dry season.  相似文献   
196.
Nitrate and phosphate uptake kinetics ofChattonella antiqua were examined under light and dark conditions. The uptake kinetics ofC. antiqua followed the Michaelis-Menten equation. The maximal uptake rates (V max) of nitrate and phosphate in the dark were 86 and 93% of those in the light, respectively. The half-saturation constants (K 8 ) were not significantly affected by illumination and were comparable to those of other phytoplankton. However, specific maximal uptake rates ofC. antiqua for these substrates were much smaller than those of other phytoplankton.  相似文献   
197.
We investigated by numerical integrations the long-term orbital evolution of four giant comets or comet-like objects. They are Chiron, P/Schwassmann-Wachmann 1 (SW1), Hidalgo, and 1992AD (5145), and their orbits were traced for 100–200 thousand years (kyr) toward both the past and the future. For each object, 13 orbits were calculated, one for the nominal orbital elements and other 12 with slightly modified elements based on the rms residual of the orbit determination and on the number of observations. As past studies indicate, their orbital evolution is found to be very chaotic, and thus can be described only in terms of probability. Plots of the semi-major axis (a) and perihelion distance (q) of the objects treated here seem to cross each other frequently, suggesting a possibility of their common evolutionary paths. About a half of all the calculated orbits showedq- ora-decreasing evolution. This indicates that, at least on the time scale in question, the giant comet-like objects are possibly on a dynamical track that can lead to capture from the outer solar system. We could hardly find the orbits with perihelia far outside the orbit of Saturn (q>15 AU). This is perhaps because the evolution of the orbits beyond Saturn is so slow that substantial orbital changes do not take place within 100–200 kyr.  相似文献   
198.
199.
Early Archean (3.46 Ga) hydrothermally altered basaltic rocks exposed near Marble Bar, eastern Pilbara Craton, have been studied in order to reveal geological and geochemical natures of seafloor hydrothermal carbonatization and to estimate the CO2 flux sunk into the altered oceanic crust by the carbonatization. The basaltic rocks are divided into basalt and dolerite, and the basalt is further subdivided into type I, having original igneous rock textures, and type II, lacking these textures due to strong hydrothermal alteration. Primary clinopyroxene phenocrysts are preserved in some part of the dolerite samples, and the alteration mineral assemblage of dolerite (chlorite + epidote + albite + quartz ± actinolite) indicates that the alteration condition was typical greenschist facies. In other samples, all primary minerals were completely replaced by secondary minerals, and the alteration mineral assemblage of the type I and type II basalts (chlorite + K-mica + quartz + carbonate minerals ± albite) is characterized by the presence of K-mica and carbonate minerals and the absence of Ca-Al silicate minerals such as epidote and actinolite, suggesting the alteration condition of high CO2 fugacity. The difference of the alteration mineral assemblages between basalt and dolerite is probably attributed to the difference of water/rock ratio that, in turn, depends on their porosity.Carbonate minerals in the carbonatized basalt include calcite, ankerite, and siderite, but calcite is quite dominant. The δ13C values of the carbonate minerals are −0.3 ± 1.2‰ and mostly within the range of marine carbonate, indicating that the carbonate minerals were formed by seafloor hydrothermal alteration and that carbonate carbon in the altered basalt was derived from seawater. Whole-rock chemical composition of the basaltic rocks is essentially similar to that of modern mid-ocean ridge basalt (MORB) except for highly mobile elements such as K2O, Rb, Sr, and Ba. Compared to the least altered dolerite, all altered basalt samples are enriched in K2O, Rb, and Ba, and are depleted in Na2O, reflecting the presence of K-mica replacing primary plagioclase. In addition, noticeable CO2 enrichment is recognized in the basalt due to the ubiquitous presence of carbonate minerals, but there was essentially neither gain nor loss of CaO. This suggests that the CO2 in the hydrothermal fluid (seawater) was trapped by using Ca originally contained in the basalt. The CaO/CO2 ratios of the basalt are generally the same as that of pure calcite, indicating that Ca in the basalt was almost completely converted to calcite during the carbonatization, although Mg and Fe were mainly redistributed into noncarbonate minerals such as chlorite.The carbon flux into the Early Archean oceanic crust by the seafloor hydrothermal carbonatization is estimated to be 3.8 × 1013 mol/yr, based on the average carbon content of altered oceanic crust of 1.4 × 10-3 mol/g, the alteration depth of 500 m, and the spreading rate of 1.8 × 1011 cm2/yr. This flux is equivalent to or greater than the present-day total carbon flux. It is most likely that the seafloor hydrothermal carbonatization played an important role as a sink of atmospheric and oceanic CO2 in the Early Archean.  相似文献   
200.
Abstract— In this paper we describe the recovery, handling and preliminary mineralogical investigation of the Tagish Lake meteorite. Tagish Lake is a type 2 carbonaceous chondrite which bears similarities to CI1 and CM chondrite groups, but is distinct from both. Abundant phyllosilicates as well as chondrules (however sparse) and common olivine grains in the matrix preclude any other classification. The bulk density of Tagish Lake (1.67 g/cc) is far lower than CI or CM chondrites (2.2‐2.3 and 2.6‐2.9 g/cc, respectively), or any other meteorite for that matter. We have identified two lithologies: a dominant carbonate‐poor lithology and a less‐abundant carbonate‐rich lithology. The meteorite is a breccia at all scales. We have noted similarities between Tagish Lake and some clasts within the enigmatic meteorite Kaidun; possibly there are genetic relationships here worth exploring. In the paper we describe a clast of CM1 material within Tagish Lake which is very similar to a major lithology in Kaidun.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号