首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7769篇
  免费   153篇
  国内免费   314篇
测绘学   212篇
大气科学   604篇
地球物理   1610篇
地质学   2879篇
海洋学   636篇
天文学   1849篇
综合类   29篇
自然地理   417篇
  2023年   45篇
  2022年   52篇
  2021年   58篇
  2020年   66篇
  2019年   81篇
  2018年   233篇
  2017年   190篇
  2016年   274篇
  2015年   161篇
  2014年   261篇
  2013年   412篇
  2012年   237篇
  2011年   406篇
  2010年   287篇
  2009年   456篇
  2008年   357篇
  2007年   323篇
  2006年   335篇
  2005年   305篇
  2004年   289篇
  2003年   272篇
  2002年   250篇
  2001年   218篇
  2000年   205篇
  1999年   178篇
  1998年   168篇
  1997年   161篇
  1996年   154篇
  1995年   136篇
  1994年   114篇
  1993年   92篇
  1992年   78篇
  1991年   87篇
  1990年   78篇
  1989年   83篇
  1988年   59篇
  1987年   101篇
  1986年   64篇
  1985年   64篇
  1984年   69篇
  1983年   71篇
  1982年   72篇
  1981年   68篇
  1980年   54篇
  1979年   51篇
  1977年   48篇
  1976年   47篇
  1975年   35篇
  1974年   30篇
  1973年   41篇
排序方式: 共有8236条查询结果,搜索用时 15 毫秒
961.
We present both statistical and case studies of magnetosheath interaction with the high-latitude magnetopause on the basis of Interball-1 and other ISTP spacecraft data. We discuss those data along with recently published results on the topology of cusp-magnetosheath transition and the roles of nonlinear disturbances in mass and energy transfer across the high-latitude magnetopause. For sunward dipole tilts, a cusp throat is magnetically open for direct interaction with the incident flow that results in the creation of a turbulent boundary layer (TBL) over an indented magnetopause and downstream of the cusp. For antisunward tilts, the cusp throat is closed by a smooth magnetopause; demagnetized ‘plasma balls’ (with scale ∼ few RE, an occurrence rate of ∼25% and trapped energetic particles) present a major magnetosheath plasma channel just inside the cusp. The flow interacts with the ‘plasma balls’ via reflected waves, which trigger a chaotization of up to 40% of the upstream kinetic energy. These waves propagate upstream of the TBL and initiate amplification of the existing magnetosheath waves and their cascade-like decays during downstream passage throughout the TBL. The most striking feature of the nonlinear interaction is the appearance of magnetosonic jets, accelerated up to an Alfvenic Mach number of 3. The characteristic impulsive local momentum loss is followed by decelerated Alfvenic flows and modulated by the TBL waves; momentum balance is conserved only on time scales of the Alfvenic flows (1/fA ∼12 min). Wave trains at fA∼1.3 mHz are capable of synchronizing interactions throughout the outer and inner boundary layers. The sonic/Alfvenic flows, bounded by current sheets, control the TBL spectral shape and result in non-Gaussian statistical characteristics of the disturbances, indicating the fluctuation intermittency. We suggest that the multi-scale TBL processes play at least a comparable role to that of macro-reconnection (remote from or in the cusp) in solar wind energy transformation and population of the magnetosphere by the magnetosheath plasma. Secondary micro-reconnection constitutes a necessary chain at the small-scale (∼ion gyroradius) edge of the TBL cascades. The thick TBL transforms the flow energy, including deceleration and heating of the flow in the open throat, ‘plasma ball’ and the region downstream of the cusp.  相似文献   
962.
In this paper we report energetic ion behavior and its composition variations observed by the Cluster/RAPID instrument when the spacecraft was travelling in the high latitude magnetospheric boundary region on the day of the 31 March, 2001, strongest magnetic storm in the past 50 years. The Dst index reached −360 nT at about 09:00 UT. During its early recovery phase, large amounts of oxygen and helium ions were observed; the ratio of oxygen to hydrogen in the RAPID energy range reached as high as 250%, which suggests that the observed energetic particles might be of magnetospheric origin. The observations further show that enhanced energetic electron fluxes are confined in a very narrow region, while protons have occupied a larger region, and heavy ions have been observed in an even larger region. The flux of energetic electrons show a slight enhancement in a region where the magnetic field magnitude is around zero. These observed energetic ions could be quasi-trapped by the current sheet in the stagnation region of the cusp.  相似文献   
963.
964.
In this study, we addressed the effects of wind-induced drift on Lagrangian trajectories of surface sea objects using high-resolution ocean forecast and atmospheric data. Application of stochastic Leeway model for prediction of trajectories drift was considered for the numerical reconstruction of the Elba accident that occurred during the period 21.06.2009–22.06.2009: a person on an inflatable raft was lost in the vicinity of the Elba Island coast; from the initial position, the person on a raft drifted southwards in the open sea and later he was found on a partially deflated raft during rescue operation. For geophysical forcing, we used high-resolution currents from the Mediterranean Forecasting System and atmospheric wind from the European Centre for Medium-Range Weather Forecasts. To investigate the effect of wind on trajectory behavior, numerical simulations were performed using different categories of drifter-like particles similar to a person on an inflatable raft. An algorithm of spatial clustering was used to differentiate the most probable search areas with a high density of particles. Our results showed that the simulation scenarios using particles with characteristics of draft-limited sea drifters provided better prediction of an observed trajectory in terms of the probability density of particles.  相似文献   
965.
Y. Chebud  A. Melesse 《水文研究》2013,27(10):1475-1483
Lake Tana is the largest fresh water body situated in the north‐western highlands of Ethiopia. In addition to its ecological services, it serves for local transport, electric power generation, fishing, recreational purposes, and source of dry season irrigation water supply. Evidence shows that the lake has dried at least once at about 15,000–17,000 before present owing to a combination of high evaporation and low precipitation events. Past attempts to understand and simulate historical fluctuation of Lake Tana based on simplistic water balance approach of inflow, outflow, and storage have failed to capture well‐known events of drawdown and rise of the lake that have happened in the last 44 years. This study tested different stochastic methods of lake level and volume simulation for supporting Lake Tana operational planning decision support. Three stochastic methods (perturbations approach, Monte Carlo methods, and wavelet analysis) were employed for lake level and volume simulation, and the results were compared with the stage level measurements. Forty‐four years of daily, monthly, and mean annual lake level data have shown a Gaussian variation with goodness of fit at 0.01 significant levels of the Kolmogorov–Smirnov test. The stochastic simulations predicted the lake stage level of the 1972, 1984, and 2002/2003 historical droughts 99% of the time. The information content (frequency) of fluctuation of Lake Tana for various periods was resolved using Wigner's Time‐Frequency Decomposition method. The wavelet analysis agreed with the perturbations and Monte Carlo simulations resolving the time (1970s, 1980s, and 2000s) in which low frequency and high spectral power fluctuation has occurred. The Monte Carlo method has shown its superiority for risk analysis over perturbation and deterministic method whereas wavelet analysis reconstructed historical record of lake stage level at daily and monthly time scales. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
966.
Using data from THEMIS spacecraft we investigated transverse to the magnetic field mutually perpendicular electric and magnetic components of ballooning type perturbations with periods 60–240 s, which are observed in the magnetospheric plasma sheet during the period preceding substorm onset. With applying Hilbert transform, we analyzed the phase relations between them. It is shown that the perturbations are dominated by radial electric and azimuthal magnetic (that is, toroidal) components which are usually in phase or out-of-phase. Along with them, approximately 2.5 times less intense azimuthal electric and radial magnetic components are present, which are more often phase-shifted by π/2. It is concluded that the observed perturbations are not a simple consequence of the development of plasma sheet ballooning instability, leading to the growth of strongly elongated along the magnetotail ballooning structures. It is pointed out that this conclusion is confirmed by simultaneous ground-based observations of magnetically conjugate auroral structures.  相似文献   
967.
Data obtained from a variety of sources including the Canadian Lightning Detection Network, weather radars, weather stations and operational numerical weather model analyses were used to address the evolution of precipitation during the June 2013 southern Alberta flood. The event was linked to a mid‐level closed low pressure system to the west of the region and a surface low pressure region initially to its south. This configuration brought warm, moist unstable air into the region that led to dramatic, organized convection with an abundance of lightning and some hail. Such conditions occurred in the southern parts of the region whereas the northern parts were devoid of lightning. Initially, precipitation rates were high (extreme 15‐min rainfall rates up to 102 mm h?1 were measured) but decreased to lower values as the precipitation shifted to long‐lived stratiform conditions. Both the convective and stratiform precipitation components were affected by the topography. Similar flooding events, such as June 2002, have occurred over this region although the 2002 event was colder and precipitation was not associated with substantial convection over southwest Alberta. Copyright © 2016 Her Majesty the Queen in Right of Canada. Hydrological Processes. © John Wiley & Sons, Ltd.  相似文献   
968.
Tritium concentrations were measured in a survey of 24 lakes, 15 wetlands, and 133 groundwaters in the oil sands region of northeastern Alberta and compared with both recent precipitation and precipitation sampled during the 1960s tritium peak caused by atmospheric thermonuclear weapons testing. Water samples from lakes included a group of 14 thaw lakes that had higher runoff attributed to melting of permafrost in peat plateaus within their watersheds. While tritium in all lakes was found to be intermediate between recent and 1960s concentrations, the thaw lakes were found to be significantly enriched in tritium compared with other lakes, as were unfrozen wetlands characterized by a thick sequence of low‐hydraulic conductivity peat. The results provide further evidence of different water sources to the thaw lakes and may indicate that melting of modern permafrost in part formed since the 1950s is occurring in these systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
969.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
970.
Abstract

Laboratory experiments on the decay (spin-up) of fluid motion on the β-plane are compared with theory. Under weakly dissipative conditions, some particles conserve potential vorticity during the entire decay. We also study the rectified mean flow which is produced by the lateral Reynolds Stress when a low frequency force is applied to the planetary fluid. The possible connection of effects with oceanic phenomena is briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号