首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   35篇
  国内免费   6篇
测绘学   20篇
大气科学   41篇
地球物理   142篇
地质学   190篇
海洋学   82篇
天文学   67篇
综合类   2篇
自然地理   21篇
  2024年   1篇
  2023年   3篇
  2022年   9篇
  2021年   11篇
  2020年   21篇
  2019年   16篇
  2018年   41篇
  2017年   22篇
  2016年   32篇
  2015年   14篇
  2014年   27篇
  2013年   37篇
  2012年   33篇
  2011年   47篇
  2010年   27篇
  2009年   32篇
  2008年   36篇
  2007年   21篇
  2006年   24篇
  2005年   18篇
  2004年   17篇
  2003年   12篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有565条查询结果,搜索用时 15 毫秒
561.
Abstract

Satellite radar altimetry is complementary to in situ limnimetric surveys as a means of estimating the water height of large rivers, lakes and flood plains. Production of water height time series by satellite radar altimetry technology requires first the selection of radar ground target locations corresponding to water body surfaces under study, i.e. the definition of “virtual limnimetric stations”. We propose to investigate qualitative and quantitative differences between three representative virtual station creation methodologies: (a) a fully manual method, (b) a semi-automatic method based on a land cover characterization that allows the water body surface under study to be located; and (c) an original fully automatic procedure that exploits a digital elevation model and an estimation of the river width. The results yielded by these three methods are comparable: maximum absolute magnitudes of water height differences being 0.46, 0.26 and 0.15 m for, respectively, 95, 90 and 80% of the water height values obtained. Moreover, more than 67% and 92% of time series jointly produced by the methods present root mean square differences lower than 20 and 50 cm, respectively. The results show that the fully automatic method developed herein provides as reliable results as the fully manual one. This opens the way to use of satellite radar altimetry for the generation of water height time series on a large scale, and considerably extends the applicability of satellite radar altimetry in hydrology.

Citation Roux, E., Santos da Silva, J., Vieira Getirana, A. C., Bonnet, M.-P., Calmant, S., Martinez, J.-M. & Seyler, F. (2010) Producing time series of river water height by means of satellite radar altimetry—comparative study. Hydrol. Sci. J. 55(1), 104–120.  相似文献   
562.
The relative impacts of tidal (neap, spring) and river discharge (including a flood event) forcing upon water and sediment circulation have been examined at the rock-bound Guadiana estuary. Near-bed and vertical profiles of current, salinity, turbidity, plus surface suspended sediment concentrations (SSC, at some stations only), were collected at the lower and central/upper estuary during tidal and fortnightly cycles. In addition, vertical salinity and turbidity profiles were collected around high and low water along the estuary. Tidal asymmetry produced faster currents on the ebb than on the flood, especially at the mouth. This pattern of seaward current dominance was enhanced with increasing river flow, due to horizontal advection that was confined within the narrow estuarine channel. The freshwater inputs and, at a degree less, the tidal range controlled the vertical mixing and stratification importance. Well-mixed (spring) and partially stratified (neap) conditions alternated during periods of low river flows, with significant intratidal variations induced by tidal straining (especially at the partially stratified estuary). Highly stratified conditions developed with increasing river discharge. Intratidal variability in the pycnocline depth and thickness resulted from current shear during the ebb. A salt wedge with tidal motion was observed at the lower estuary during the flood event. Depending on the intensity of turbulent mixing, the residual water circulation was dominantly controlled either by tidal asymmetry or gravitational circulation. The SSC was governed by cyclical local processes (resuspension, deposition, mixing, advection) driven by the neap-spring fluctuations in tidal current velocities. More, intratidal variability in stratification indicated the significance of tidal pumping at the partially and highly stratified estuary. The estuary turbidity maximum (ETM) was enhanced with increasing current velocities, and displaced downstream during periods of high river discharge. During the flood event, the ETM was expelled out of the estuary, and the SSC along the estuary was controlled by the sediment load from the drainage basin. Under these highly variable river flow conditions, our observations suggest that sand is exported to the nearshore over the long-term (>years).  相似文献   
563.
This paper examines the soil-water behaviour of sandy soils representative of a broad area in the Duero river basin (Spain), with semi-arid bioclimatic characteristics. Soil-moisture measurements of the first 25 cm of soil profile were taken using time domain reflectometry (TDR) methodology. The infiltration process was studied by means of field experiments combining rainfall simulations and TDR techniques. Finally, a set of hydrodynamic variables was calculated in the laboratory (i.e. available soil-water content, soil-water-retention curves and hydraulic conductivity).The average available soil-water content is 0·07 cm3 cm−3, in accordance with the predominance of the sandy textural fraction (85%). The rainfall simulation experiments show that infiltration prevails over overland flow, with a steady-state infiltration rate higher than rainfall application (40mmh−1) in most cases; a low water-retention capacity was also observed. The evolution of soil-moisture over time indicates a close dependence on intra-annual rainfall variability due to the low water-retention capacity of sandy soils. With a maximum water-storage capacity of around 0·18 cm3 cm−3, the soils studied show high sensitivity to dry spells and may remain with <50% of the available soil-water content for several months during the year.  相似文献   
564.
Coastal wetlands are hotspots for biodiversity and biological productivity, yet the hydrology and carbon cycling within these systems remains poorly understood due to their complex nature. By using a novel spatiotemporal approach, this study quantified groundwater discharge and the related inputs of acidity and CO2 along a continuum of a modified coastal acid sulphate soil (CASS) wetland, a coastal lake and an estuary under highly contrasting hydrological conditions. To increase the resolution of spatiotemporal data and advance upon previous methodologies, we relied on automated observations from four simultaneous time-series stations to develop multiple radon mass balance models to estimate groundwater discharge and related groundwater inputs of acidity and dissolved inorganic carbon (DIC), along with surface water to atmosphere CO2 fluxes. Spatial surveys indicated distinct acid hotspots with minimum surface water pH of 2.91 (dry conditions) and 2.67 (flood conditions) near a non-remediated (drained) CASS area. Under flood conditions, groundwater discharge accounted for ~14.5 % of surface water entering the lake. During the same period, acid discharge from the acid sulphate soil section of the continuum produced ~4.8 kg H2SO4?ha?1 day?1, a rate much higher than previous studies in similar systems. During baseflow conditions, the low pH water was rapidly buffered within the estuarine lake, with the pH increasing from 4.22 to 6.07 over a distance of ~250 m. The CO2 evasion rates within the CASS were extremely high, averaging 2163?±?125 mmol m?2 day?1 in the dry period and 4061?±?259 mmol m?2 day?1 under flood conditions. Groundwater input of DIC could only account for 0.4 % of this evasion in the dry conditions and ~5 % during the flood conditions. We demonstrated that by utilising a spatiotemporal (multiple time-series stations) approach, the study was able to isolate distinct zones of differing hydrology and biogeochemistry, whilst providing more reasonable groundwater acid input estimates and air–water CO2 flux estimates than some traditional sampling designs. This study highlights the notion that modified CASS wetlands can release large amounts of CO2 to the atmosphere because of high groundwater acid inputs and extremely low surface water pH.  相似文献   
565.
Rainfall is one of the primary triggers for many geological and hydrological natural disasters. While the geological events are related to mass movements in land collapse due to waterlogging, the hydrological ones are usually assigned to runoff or flooding. Studies in the literature propose predicting mass movement events as a function of accumulated rainfall levels recorded at distinct periods. According to these approaches, a two-dimensional rainfall levels feature space is segmented into the occurrence and non-occurrence decision regions by an empirical critical curve (CC). Although this scheme may easily be extended to other purposes and applications, studies in the literature need to discuss its use for flooding prediction. In light of this motivation, the present study is unfolded in (1) verifying that defining CCs in the rainfall levels feature space is a practical approach for flooding prediction and (2) analyzing how geospatial components interact with rainfall levels and flooding prediction. A database containing the rainfall levels recorded for flooding and non-flooding events in São Paulo city, Brazil, regarding the period 2015–2016, was considered in this study. The results indicate good accuracy for flooding prediction using only partial rain, which can be improved by adding physical characteristics of the flooding locations, demonstrating a direct correlation with spatial interactions, and rainfall levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号