首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   758篇
  免费   18篇
  国内免费   15篇
测绘学   22篇
大气科学   60篇
地球物理   167篇
地质学   351篇
海洋学   38篇
天文学   112篇
综合类   3篇
自然地理   38篇
  2022年   5篇
  2021年   8篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2017年   11篇
  2016年   18篇
  2015年   12篇
  2014年   24篇
  2013年   37篇
  2012年   27篇
  2011年   24篇
  2010年   31篇
  2009年   34篇
  2008年   23篇
  2007年   38篇
  2006年   29篇
  2005年   23篇
  2004年   26篇
  2003年   25篇
  2002年   29篇
  2001年   25篇
  2000年   16篇
  1999年   17篇
  1998年   15篇
  1997年   14篇
  1996年   23篇
  1995年   15篇
  1994年   9篇
  1993年   10篇
  1992年   11篇
  1991年   9篇
  1990年   12篇
  1989年   19篇
  1988年   9篇
  1987年   8篇
  1986年   7篇
  1985年   5篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   10篇
  1980年   9篇
  1979年   8篇
  1978年   8篇
  1975年   7篇
  1973年   5篇
  1971年   4篇
  1966年   5篇
  1958年   5篇
排序方式: 共有791条查询结果,搜索用时 15 毫秒
111.
112.
Diatoms, Cladocera, and chironomids preserved in the sediments of Lake Dalgoto were studied to reconstruct the history of the lake ecosystem in the context of the vegetation history as represented by the pollen stratigraphy. Younger Dryas silty sediments at the base of the core are characterized by low diversity of aquatic organisms. The transition to the Holocene is indicated by a sharp change from silt to clay-gyttja. The migration and expansion of trees at lower elevations between 10200 and 8500 14C-yr BP, along with higher diversities and concentrations of aquatic organisms and the decreased proportion of north-alpine diatoms, point to rapidly rising summer temperatures. After 6500 14C-yr BP the expansion of Pinus mugo in the catchment coincides with signs of natural eutrophication as recorded by an increase of planktonic diatoms. In the late Holocene (4000–0 14C-yr BP) Pinus peuce and Abies are reduced and Picea expands. Cereal grains and disturbance indicators suggest late-Holocene human modification of the vegetation.  相似文献   
113.
Recent developments in theoretical model-calculations for the synthesis of the chemical elements during late stages of stellar evolution are reviewed. Special emphasis is put on a discussion of various astrophysical sites, including core-collapse and thermonuclear supernovae, and the physics of turbulent reactive fluids. Results of numerical simulations are presented and discussed, together with new results concerning solar-system abundances as well as abundances observed in very metal-poor stars, in the context of searches for constraints on the still rather uncertain nuclear physics data and astrophysical models. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
114.
We present a geochemical and isotopic study that, consistent with observed field relations, suggest Sangmelima late Archaean high-K granite was derived by partial melting of older Archaean TTG. The TTG formations are sodic-trondhjemitic, showing calcic and calc-alkalic trends and are metaluminous to peraluminous. High-K granites in contrast show a potassic calc-alkaline affinity that spans the calcic, calc-alkalic, alkali-calcic and alkalic compositions. The two rock groups (TTG and high-K granites) on the other hand are both ferroan and magnesian. They have a similar degree of fractionation for LREE but a different one for HREE. Nd model ages and Sr/Y ratios define Mesoarchaean and slab-mantle derived magma compositions respectively, with Nb and Ti anomalies indicating a subduction setting for the TTG. Major and trace element in addition to Sr and Nd isotopic compositions support field observations that indicate the derivation of the high-K granitic group from the partial melting of the older TTG equivalent at depth. Geochemical characteristics of the high-K granitic group are therefore inherited features from the TTG protolith and cannot be used for determining their tectonic setting. The heat budget required for TTG partial melting is ascribed to the upwelling of the mantle marked by a doleritic event of identical age as the generated high-K granite melts. The cause of this upwelling is related to linear delamination along mega-shear zones in an intracontinental setting.  相似文献   
115.
We interpret the puzzling-ray bursts as emitted by cooling sparks from the surface of spasmodically accreting, old neutron stars. Their spiky, anisotropic radiation is oriented w.r.t. the galactic disk via interstellar accretion, whose orbital angular momentum tends to counteralign with the galactic spin; in this way, larger source numbers in directions of the galactic disk are compensated by smaller beaming probabilities, resulting in a near-isotropic arrival distribution, as observed by BATSE. The source distances range between 10 pc and 500 pc. Their radiated energies are of order 1035 erg, corresponding to accreted clumps (blades) of typical mass 1015 g per burst. Magnetic surface field strengths range between 1010 and 1012 G, somewhat weaker than those of newborn neutron stars.  相似文献   
116.
The ultramafic-hosted Logatchev Hydrothermal Field (LHF) at 15°N on the Mid-Atlantic Ridge and the Arctic Gakkel Ridge (GR) feature carbonate precipitates (aragonite, calcite, and dolomite) in voids and fractures within different types of host rocks. We present chemical and Sr isotopic compositions of these different carbonates to examine the conditions that led to their formation. Our data reveal that different processes have led to the precipitation of carbonates in the various settings. Seawater-like 87Sr/86Sr ratios for aragonite in serpentinites (0.70909 to 0.70917) from the LHF are similar to those of aragonite from the GR (0.70912 to 0.70917) and indicate aragonite precipitation from seawater at ambient conditions at both sites. Aragonite veins in sulfide breccias from LHF also have seawater-like Sr isotope compositions (0.70909 to 0.70915), however, their rare earth element (REE) patterns show a clear positive europium (Eu) anomaly indicative of a small (< 1%) hydrothermal contribution. In contrast to aragonite, dolomite from the LHF has precipitated at much higher temperatures (~ 100 °C), and yet its 87Sr/86Sr ratios (0.70896 to 0.70907) are only slightly lower than those of aragonite. Even higher temperatures are calculated for the precipitation of deformed calcite veins in serpentine–talc fault schists form north of the LHF. These calcites show unradiogenic 87Sr/86Sr ratios (0.70460 to 0.70499) indicative of precipitation from evolved hydrothermal fluids. A simple mixing model based on Sr mass balance and enthalpy conservation indicates strongly variable conditions of fluid mixing and heat transfers involved in carbonate formation. Dolomite precipitated from a mixture of 97% seawater and 3% hydrothermal fluid that should have had a temperature of approximately 14 °C assuming that no heat was transferred. The much higher apparent precipitation temperatures based on oxygen isotopes (~ 100 °C) may be indicative of conductive heating, probably of seawater prior to mixing. The hydrothermal calcite in the fault schist has precipitated from a mixture of 67% hydrothermal fluid and 33% seawater, which should have had an isenthalpic mixing temperature of ~ 250 °C. The significantly lower temperatures calculated from oxygen isotopes are likely due to conductive cooling of hydrothermal fluid discharging along faults. Rare earth element patterns corroborate the results of the mixing model, since the hydrothermal calcite, which formed from waters with the greatest hydrothermal contribution, has REE patterns that closely resemble those of vent fluids from the LHF. Our results demonstrate, for the first time, that (1) precipitation from pure seawater, (2) conductive heating of seawater, and (3) conductive cooling of hydrothermal fluids in the sub-seafloor all can lead to carbonate precipitation within a single ultramafic-hosted hydrothermal system.  相似文献   
117.
118.
Acta Geotechnica - The paper presents an experimental study on the effect of plastic fines content on the undrained behavior and liquefaction susceptibility of sand–fines mixtures under...  相似文献   
119.
120.
Real-time multi-model decadal climate predictions   总被引:1,自引:1,他引:0  
We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus view to prevent over-confidence in forecasts from any single model, and establish current collective capability. We stress that the forecast is experimental, since the skill of the multi-model system is as yet unknown. Nevertheless, the forecast systems used here are based on models that have undergone rigorous evaluation and individually have been evaluated for forecast skill. Moreover, it is important to publish forecasts to enable open evaluation, and to provide a focus on climate change in the coming decade. Initialized forecasts of the year 2011 agree well with observations, with a pattern correlation of 0.62 compared to 0.31 for uninitialized projections. In particular, the forecast correctly predicted La Niña in the Pacific, and warm conditions in the north Atlantic and USA. A similar pattern is predicted for 2012 but with a weaker La Niña. Indices of Atlantic multi-decadal variability and Pacific decadal variability show no signal beyond climatology after 2015, while temperature in the Niño3 region is predicted to warm slightly by about 0.5 °C over the coming decade. However, uncertainties are large for individual years and initialization has little impact beyond the first 4 years in most regions. Relative to uninitialized forecasts, initialized forecasts are significantly warmer in the north Atlantic sub-polar gyre and cooler in the north Pacific throughout the decade. They are also significantly cooler in the global average and over most land and ocean regions out to several years ahead. However, in the absence of volcanic eruptions, global temperature is predicted to continue to rise, with each year from 2013 onwards having a 50 % chance of exceeding the current observed record. Verification of these forecasts will provide an important opportunity to test the performance of models and our understanding and knowledge of the drivers of climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号