首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   14篇
  国内免费   15篇
测绘学   22篇
大气科学   60篇
地球物理   167篇
地质学   353篇
海洋学   38篇
天文学   117篇
综合类   3篇
自然地理   38篇
  2022年   5篇
  2021年   8篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2017年   11篇
  2016年   18篇
  2015年   12篇
  2014年   24篇
  2013年   38篇
  2012年   27篇
  2011年   25篇
  2010年   34篇
  2009年   35篇
  2008年   24篇
  2007年   38篇
  2006年   28篇
  2005年   23篇
  2004年   26篇
  2003年   25篇
  2002年   29篇
  2001年   26篇
  2000年   16篇
  1999年   17篇
  1998年   15篇
  1997年   15篇
  1996年   23篇
  1995年   15篇
  1994年   9篇
  1993年   10篇
  1992年   11篇
  1991年   9篇
  1990年   12篇
  1989年   19篇
  1988年   9篇
  1987年   8篇
  1986年   7篇
  1985年   5篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   10篇
  1980年   8篇
  1979年   8篇
  1978年   8篇
  1975年   7篇
  1973年   5篇
  1971年   4篇
  1966年   5篇
  1958年   5篇
排序方式: 共有798条查询结果,搜索用时 0 毫秒
91.
92.
In this work, investigations dealing with the determination of hydrocarbons in contaminated soil water are presented. The hydrocarbons under investigation range from low to high volatility compounds. A GC‐FID method was developed that due to its efficiency, routine suitability, relative rapidity, and low cost is suitable for the analysis of complex chemical mixtures of highly volatile hydrocarbons (with boiling points between 69 and 190°C). The standard used was a gasoline mixture with boiling points ranging from 100 to 190°C. For this standard, no supplementary preparation is needed and it is suitable for the whole range of hydrocarbons under investigation. The determination of the hydrocarbon content of the samples was performed applying univariate and multivariate statistical analysis to the experimental data. In the characterization of a contamination with highly volatile hydrocarbons of soil water originating from different depth layers from the chemistry location Leuna (Sachsen‐Anhalt, Germany), the advantages of a multivariate method are demonstrated in exemplary manner.  相似文献   
93.
On the basis of different sets of aerial photos the dynamics of the reed bed areas of Lake Constance were investigated in relation to the dynamics of the water levels. The objectives of the study were to quantify the changes of reed areas due to different flood events in the last decades and their recovery in the time periods between these events. The results should given information of the relevance of water level variations on reed bed dynamics and the regeneration times of reed beds after extreme disturbance events.Following the extreme flood at Lake Constance in 1999 the reed belts of Lake Constance lost approximately 30 ha (24%) of the lakeside reed beds. The loss is comparable to the situation in the late 1960s, when approximately 40 ha died back due to the extreme flood in 1965 and the high spring water levels in the subsequent years. In the time period between the extreme floods of 1965 and 1999, the reed areas expanded to nearly 85% of the area before 1965. The expansion rates increased with increasing distance to the flood event of 1965. Especially in periods with series of years of low spring water level the expansion rates were high.The damage degrees of the reed areas in the years 2000 and 2002 showed a clear relation to the elevation (i.e. average water level) of the stands. The damage degree increased with decreasing elevation. Furthermore the regeneration process of severely damaged stands was related to the elevation level of the stands. Whereas stands at high elevation regenerate fast, those at low elevation died off completely in the years after the extreme flood. This supports the hypothesis that the water level flutuations play a major role in the reed dynamics of Lake Constance.As a consequence of the climate change an increase in the frequency of high spring water levels is expected. Thus, it seems unlikely that reed stands will ever expand again to the same area as before 1965.  相似文献   
94.
Although the effectiveness of best management practices (BMPs) in reducing urban flooding is widely recognized, the improved sustainability achieved by implementing BMPs in upstream suburban areas, reducing downstream urban floods, is still debated. This study introduces a new definition of urban drainage system (UDS) sustainability, focusing on BMP usage to enhance system performance after adaptation to climate change. Three types of hydraulic reliability index (HRI) plus robustness and improvability indices were used to quantify the potential enhanced sustainability of the system in a changing climate, together with a climate change adaptability index (CCAI). The sustainability of UDS for the safe conveyance of storm-water runoff was investigated under different land-use scenarios: No BMP, BMP in urban areas, and BMP inside and upstream of urban areas, considering climate change impacts. Rainfall–runoff simulation alongside drainage network modelling was conducted using a storm-water management model (US EPA SWMM) to determine the inundation areas for both base-line and future climatic conditions. A new method for disaggregating daily rainfall to hourly, proposed to provide a finer resolution of input rainfall to SWMM, was applied to a semi-urbanized catchment whose upstream runoff from mountainous areas may contribute to the storm-water runoff in downstream urban parts. Our findings confirm an increase in the number of inundation points and reduction in sustainability indices of UDS due to climate change. The results present an increase in UDS reliability from 4% to 16% and improvements in other sustainability indicators using BMPs in upstream suburban areas compared to implementing them in urban areas.  相似文献   
95.
Steep erosion‐prone and vegetation‐free slopes are widespread in alpine areas and are often discussed since they have a high socio‐economic damage potential. We present an eco‐engineering approach to test whether a mycorrhizal inoculum improves the establishment of hedge brush layers and in turn soil structural stability on a steep, coarse‐grained vegetation‐free slope in the eastern Swiss Alps. We established (i) mycorrhizal and (ii) non‐mycorrhizal treated eco‐engineered research plots on a field experimental scale, covering a total area of approximately 1000 m2 on an east‐northeast (ENE) exposed slope, where many environmental parameters can be regarded as homogeneous. After a full vegetation period, we quantified soil aggregate stability, the formation of water stable aggregates and the fine‐root development. Our results illustrate that the establishment of brush layers without mycorrhizal inoculum increased aggregate stability significantly. Against our expectation and glasshouse experiments, the addition of mycorrhizal inoculum did not have a statistically significant effect after one vegetation period although it tended to increase aggregate stability. Analogously, root length density (RLD) tended to be higher at the non‐mycorrhizal treated site. Aggregate stability was significantly correlated with RLD. Studies on a bigger field experimental scale are inevitable, complement glasshouse studies and lead to a better understanding for a successful application of sustainable eco‐engineering measures in alpine environments. Based on our results and considering the fact that the response time in natural ecosystems may be slower than in laboratory approaches, we conclude that long‐term field studies are necessary to validate results gained through laboratory experiments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
96.
The Dabie Mountain is the collisional orogenic belt between the North China Block and the Yangtze Block. As the eastern segment of the central-China orogenic belt, its tectonic framework is corresponding to the Qinling orogenic belt as a whole[1]. The NHB in northern part of Dabie Orogen is regarded as the joint belt between the Yangtze Block and the North China Block, and roughly corresponds to the north Qinling belt of the Qinling orogenic belt, which separated the Tongbai-Dabie hig…  相似文献   
97.
The development of instrumental analytics such as the LC-MS/MS has made it possible to quickly determine many component concentrations in a single chromatogram. However, the validation of such multi-methods needs new strategies for robustness and optimization. Statistical execution of analytical tests is one tool that can be utilized to meet this requirement. A Central Composite Design (CCD) was utilized for the validation of an LC-MS/MS multi-method for 84 analytes. The experimental design includes six design variables and two non-design variables (response variables). Concentration, ionization temperature, dwell time, gradient, flow (of eluent), and spraying/curtain gas (continuous design variables) were varied on five different levels; the whole design encompassed 91 runs. To investigate the robustness of a LC-MS/MS method both peak sensitivity and chromatographic separation had to be verified. Therefore, two non-design variables were necessary. The distribution of the peaks over analysis time was applied to describe the quality of the chromatographic separation. The sensitivity was described with the signal to noise ratio (S/N). The evaluation of the measured data was accomplished with the Analysis of Variance (ANOVA) and the Response Surface Methodology (RSM). Three main effects (concentration, ionization temperature, dwell time) and no significant interaction effect were found for the response variable “S/N”. The variables of concentration, ionization temperature, and dwell time had no significant effects for the response variable “S/N”. The ANOVA of the response variable chromatographic separation abandoned no significant effects as well. Therefore, robustness of the method can be guaranteed for all non significant design variables.  相似文献   
98.
Abstract

The collocation technique has become a popular tool in oceanography and hydrology for estimating the error variances of different data sources such as in situ sensors, models and remote sensing products. It is also possible to determine calibration constants, for example to account for an off-set between the data sources. So far, the temporal autocorrelation structure of the errors has not been studied, although it is known that it has detrimental effects on the results of the collocation technique, in particular when calibration constants are also determined. This paper shows how the (triple) collocation estimators can be adapted to retrieve the autocovariance functions; the statistical properties as well as the structural deficencies are described. The coupling between the autocorrelation of the error and the estimation of calibration constants is studied in detail, due to its importance for analysing temporal changes. In soil moisture applications, such time variations can be induced, for example, by seasonal changes in the vegetation cover, which affect both models and remote sensing products. The limitations of the proposed technique associated with these considerations are analysed using remote sensing and in situ soil moisture data. The variability of the inter-sensor calibration and the autocovariance are shown to be closely related to temporal patterns of the data.

Editor D. Koutsoyiannis

Citation Zwieback, S., Dorigo, W., and Wagner, W., 2013. Estimation of the temporal autocorrelation structure by the collocation technique with an emphasis on soil moisture studies. Hydrological Sciences Journal, 58 (8), 1729–1747.  相似文献   
99.
The exceptional Oder flood in summer 1997 was a unique event in order to investigate the impacts on and the consequences for the ecosystem of the Baltic Sea of about 6.5 km3 additional water loaded with nutrients and contaminants and discharged within only 5 weeks. About 15 institutions participated in this investigation in both the Szczecin Lagoon and the Pomeranian Bight. The Baltic Sea Research Institute Warnemünde studied the water and nutrient inflow, the spreading of the Oder discharge, and the impact of the discharge on the ecosystem. The main topic of the presented investigations is a detailed study of the spatial and temporal spreading of the extreme river discharge in the Pomeranian Bight and the southern Baltic Sea by satellite data, ship observations and continuous buoy measurements as well as numerical modelling. The meteorological conditions were characterized by mainly easterly winds which guided the outflowing riverine water along the German coast into the Arkona Sea. The spatial and temporal development of the distribution patterns of the Oder discharge was monitored by about 80 Sea Surface Temperature (SST) images of NOAA satellites. Shipborne measurements showed that the vertical extent of the Oder plume ranged between 5 and 7 metres. The concentrations of inorganic nutrients, except higher silicate, were comparable to typical winter/early spring values (seasonal maximum) in this region. The high dilution effect of the flood water reduced the concentration of contaminants and thus, prevented a direct negative impact of trace metals and chlorinated organic compounds on the marine environment. Coupled physical-biochemical modelling in combination with SST-images demonstrated the temporal development and satellite data in the visible spectral range delivered the maximum extent of discharged river water into the southern Arkona Sea where a further western transport was limited by the upwelling region off Hiddensee. Thus, all detected effects of the Oder flood were confined to the Pomeranian Bight and the southern Arkona Sea, without long-term consequences for the ecosystem.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号