首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
地球物理   2篇
地质学   10篇
海洋学   2篇
天文学   10篇
自然地理   3篇
  2021年   1篇
  2012年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1971年   1篇
  1962年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
21.
22.
Climate: Is the past the key to the future?   总被引:2,自引:0,他引:2  
 The climate of the Holocene is not well suited to be the baseline for the climate of the planet. It is an interglacial, a state typical of only 10% of the past few million years. It is a time of relative sea-level stability after a rapid 130-m rise from the lowstand during the last glacial maximum. Physical geologic processes are operating at unusual rates and much of the geochemical system is not in a steady state. During most of the Phanerozoic there have been no continental ice sheets on the earth, and the planet’s meridional temperature gradient has been much less than it is presently. Major factors influencing climate are insolation, greenhouse gases, paleogeography, and vegetation; the first two are discussed in this paper. Changes in the earth’s orbital parameters affect the amount of radiation received from the sun at different latitudes over the course of the year. During the last climate cycle, the waxing and waning of the northern hemisphere continental ice sheets closely followed the changes in summer insolation at the latitude of the northern hemisphere polar circle. The overall intensity of insolation in the northern hemisphere is governed by the precession of the earth’s axis of rotation, and the precession and ellipticity of the earth’s orbit. At the polar circle a meridional minimum of summer insolation becomes alternately more and less pronounced as the obliquity of the earth’s axis of rotation changes. Feedback processes amplify the insolation signal. Greenhouse gases (H2O, CO2, CH4, CFCs) modulate the insolation-driven climate. The atmospheric content of CO2 during the last glacial maximum was approximately 30% less than during the present interglacial. A variety of possible causes for this change have been postulated. The present burning of fossil fuels, deforestation, and cement manufacture since the beginning of the industrial revolution have added CO2 to the atmosphere when its content due to glacial-interglacial variation was already at a maximum. Anthropogenic activity has increased the CO2 content of the atmosphere to 130% of its previous Holocene level, probably higher than at any time during the past few million years. During the Late Cretaceous the atmospheric CO2 content was probably about four times that of the present, the level to which it may rise at the end of the next century. The results of a Campanian (80 Ma) climate simulation suggest that the positive feedback between CO2 and another important greenhouse gas, H2O, raised the earth’s temperature to a level where latent heat transport became much more significant than it is presently, and operated efficiently at all latitudes. Atmospheric high- and low-pressure systems were as much the result of variations in the vapor content of the air as of temperature differences. In our present state of knowledge, future climate change is unpredictable because by adding CO2 to the atmosphere we are forcing the climate toward a “greenhouse” mode when it is accustomed to moving between the glacial–interglacial “icehouse” states that reflect the waxing and waning of ice sheets. At the same time we are replacing freely transpiring C3 plants with water-conserving C4 plants, producing a global vegetation complex that has no past analog. The past climates of the earth cannot be used as a direct guide to what may occur in the future. To understand what may happen in the future we must learn about the first principles of physics and chemistry related to the earth’s system. The fundamental mechanisms of the climate system are best explored in simulations of the earth’s ancient extreme climates. Received: 7 November 1996/Accepted: 23 January 1997  相似文献   
23.
Approximately 147000 km of low-level (450 m) aeromagnetic tracks were flown over the Arctic Ocean and adjacent Greenland and Norwegian Seas, for the greater part with a digitally recording nuclear precession magnetometer designed and built by Wold (1964). The digital recording feature of the system facilitated numerous data processing and analytical techniques which are described herein. These include: noise filtering coordinate conversion, removal of the regional field, second derivatives, downward continuations, polynomial fits of varying degrees to profiles and surfaces, numerical approximations, and depth to source calculations. Using these data and interpretative techniques some inferences could be made about the geologic structure and evolution of the Arctic Ocean Basin. Salient amongst these are: both gravity and magnetic data suggest that there is a 2 1/2 km basement uplift in the eastern Chukchi Shelf associated with the Tigara structure which truncates the western end of Lisburne Peninsula. A 30–40 km wide basement root encircles the Chukchi Rise and extends over 30 km into the mantle. Within the Canda Basin there is a thickening of sediments from the Asian continental margin toward the Canadian Arctic Archipelago. Sediment thickness in the Makarov Basin is 1–1 1/2 km. There appears to be only about a 1/2 km sediment cover in the Fram and Nautilus Basins. The absence of large amplitude magnetic anomalies over these basins is attributed to a 10 km elevation of the Curie isotherm. The Alpha and Nansen ridges produce magnetic profiles that show axial symmetry and correlate with profiles in the North Atlantic. A quantitative attempt has been made to verify these correlations, which infer that the Alpha Cordillera became inactive 40 mybp when the locus of rifting shifted to the Nansen Cordillera. The absence of significant magnetic anomalies over the Lomonosov Ridge reinforces the hypothesis that it is a section of the former Eurasian continental margin that was translated into the Arctic Basin by sea-floor spreading along the Nansen Cordillera axis.  相似文献   
24.
25.
In order to investigate the dependence of quasar variability on fundamental physical parameters like black hole mass, we have matched quasars from the Quasar Equatorial Survey Team, Phase 1 (QUEST1) variability survey with broad-lined objects from the Sloan Digital Sky Survey. The matched sample contains ≈100 quasars, and the Sloan spectra are used to estimate black hole masses and bolometric luminosities. Variability amplitudes are measured from the QUEST1 light curves. We find that black hole mass correlates with several measures of the variability amplitude at the 99 per cent significance level or better. The correlation does not appear to be caused by obvious selection effects inherent to flux-limited quasar samples, host galaxy contamination or other well-known correlations between quasar variability and luminosity/redshift. We evaluate variability as a function of rest-frame time lag using structure functions and find further support for the variability–black hole mass correlation. The correlation is strongest for time lags of the order of a few months up to the QUEST1 maximum temporal resolution of ≈2 yr, and may provide important clues for understanding the long-standing problem of the origin of quasar optical variability. We discuss whether our result is a manifestation of a relation between characteristic variability time-scale and black hole mass, where the variability time-scale is typical for accretion disc thermal time-scales, but find little support for this. Our favoured explanation is that more massive black holes have larger variability amplitudes, and we highlight the need for larger samples with more complete temporal sampling to test the robustness of this result.  相似文献   
26.
The resonance transition 2P-2S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric O2 density and temperature profiles can be calculated thereof. A detector of solar Lyman-alpha radiation was manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL). Its basic part is an ionization camera, filled in with NO. A 60 V power supply is applied to the chamber. The produced photoelectric current from the sensor is fed to a two-channel amplifier, providing analog signal. The characteristics of the Lyman-alpha detector were studied. It passed successfully all tests and the results showed that the so-designed instrument could be used in rocket experiments to measure the Lymanalpha flux. From the measurements of the detector, the Lyman-alpha vertical profile can be obtained. Programs are created to compute the O2 density, atmospheric power and temperature profiles based on Lymanalpha data. The detector design appertained to ASLAF project (Attenuation of the Solar Lyman-Alpha Flux), a scientific cooperation between STIL—Bul.Acad.Sci., Stara Zagora Department and the Atmospheric Physics Group at the Department of Meteorology (MISU), Stockholm University, Sweden. The joint project was part of the rocket experiment HotPay I, in the ALOMAR eARI Project, EU’s 6th Framework Programme, Andøya Rocket Range, Andenes, Norway. The project is partly financed by the Bulgarian Ministry of Science and Education.  相似文献   
27.
We have observed the galaxy environments around a sample of 21 radio-loud, steep-spectrum quasars at 0.5≤ z ≤0.82, spanning several orders of magnitude in radio luminosity. The observations also include background control fields used to obtain the excess number of galaxies in each quasar field. The galaxy excess was quantified using the spatial galaxy–quasar correlation amplitude, B gq, and an Abell-type measurement, N 0.5. A few quasars are found in relatively rich clusters, but on average, they seem to prefer galaxy groups or clusters of approximately Abell class 0. We have combined our sample with literature samples extending down to z ≈0.2 and covering the same range in radio luminosity. By using the Spearman statistic to disentangle redshift and luminosity dependences, we detect a weak, but significant, positive correlation between the richness of the quasar environment and the radio luminosity of the quasar. However, we do not find any epoch dependence in B gq, as has previously been reported for radio quasars and galaxies. We discuss the radio luminosity–cluster richness link and possible explanations for the weak correlation that is seen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号