首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   6篇
测绘学   3篇
大气科学   11篇
地球物理   33篇
地质学   119篇
海洋学   7篇
天文学   34篇
自然地理   12篇
  2019年   3篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   5篇
  2011年   8篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  1999年   3篇
  1998年   10篇
  1997年   9篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1984年   5篇
  1981年   5篇
  1980年   2篇
  1978年   4篇
  1976年   2篇
  1974年   2篇
  1966年   2篇
  1965年   3篇
  1964年   3篇
  1957年   2篇
  1955年   3篇
  1951年   3篇
  1948年   2篇
  1934年   2篇
  1933年   2篇
  1932年   2篇
  1928年   2篇
  1927年   2篇
  1926年   3篇
  1925年   2篇
  1915年   1篇
  1914年   3篇
  1913年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
181.
The deep seismic sounding project Blue Norma was carried out in the summer of 1977 in northern Scandinavia in order to investigate the deep structure of the Norwegian continental margin and the Caledonian mountain chain. During the measurements, by chance the core phase PKIKP of an earthquake at the New Hebrides was recorded with 30 seismic field stations along a profile through the central Caledonides. The results of the refraction seismic data, as obtained by a ray-tracing method, are presented and compared to the interpretation of the relative residuals of the PKIKP travel times. From both data sets a continentward down-dipping crust-mantle boundary is evaluated. From the interpretation of the refraction seismic measurements a crustal thickness of 32 km below the coastline and 42 km below the central mountain chain is obtained. The increase of the crustal thickness derived by the inversion of the travel-time residuals along this line amounts only to 6 km. This considerable discrepancy can only be explained by an eastward increasing seismic velocity in the mantle.  相似文献   
182.
Wilhelm May 《Climate Dynamics》2011,37(9-10):1843-1868
In this study the potential future changes in different aspects of the Indian summer monsoon associated with a global warming of 2°C with respect to pre-industrial times are assessed, focussing on the role of the different mechanisms leading to these changes. In addition, these changes as well as the underlying mechanisms are compared to the corresponding changes associated with a markedly stronger global warming exceeding 4.5°C, associated with the widely used SRES A1B scenario. The study is based on two sets of four ensemble simulations with the ECHAM5/MPI-OM coupled climate model, each starting from different initial conditions. In one set of simulations (2020?C2200), greenhouse gas concentrations and sulphate aerosol load have been prescribed in such a way that the simulated global warming dioes not exceed 2°C with respect to pre-industrial times. In the other set of simulations (1860?C2200), greenhouse gas concentrations and sulphate aerosol load have been prescribed according to observations until 2000 and according to the SRES A1B scenario after 2000. The study reveals marked changes in the Indian summer monsoon associated with a global warming of 2°C with respect to pre-industrial conditions, namely an intensification of the summer monsoon precipitation despite a weakening of the large-scale monsoon circulation. The increase in the monsoon rainfall is related to a variety of different mechanisms, with the intensification of the atmospheric moisture transport into the Indian region as the most important one. The weakening of the large-scale monsoon circulation is mainly caused by changes in the Walker circulation with large-scale divergence (convergence) in the lower (uppper) troposphere over the Indian Ocean in response to enhanced convective activity over the Indian Ocean and the central and eastern Pacific and reduced convective activity over the western tropical Pacific. These changes in the Walker circulation induce westerly (easterly) wind anomalies at lower (upper) level in the Indian region. The comparison with the changes in the Indian summer monsoon associated with a global warming of 4.5°C reveals that both the intensification of the monsoon precipitation and the weakening of the large-scale monsoon circulation (particularly in the lower troposphere) are relatively strong (with respect to the magnitude of the projected global warming by the end of the twentieth century for the two scenarios) in the scenario with a global warming of 2°C. The relatively strong intensification of the monsoon rainfall is related to rather strong increases in evaporation over the Arabian Sea and the Bay of Bengal, while a rather weak amplification of the meridional temperature gradient between the Indian Ocean and the land areas to the north contributes to the relatively strong reduction of the large-scale monsoon flow.  相似文献   
183.
Wilhelm May 《Climate Dynamics》2008,31(2-3):283-313
In this study, concentrations of the well-mixed greenhouse gases as well as the anthropogenic sulphate aerosol load and stratospheric ozone concentrations are prescribed to the ECHAM5/MPI-OM coupled climate model so that the simulated global warming does not exceed 2°C relative to pre-industrial times. The climatic changes associated with this so-called “2°C-stabilization” scenario are assessed in further detail, considering a variety of meteorological and oceanic variables. The climatic changes associated with such a relatively weak climate forcing supplement the recently published fourth assessment report by the IPCC in that such a stabilization scenario can only be achieved by mitigation initiatives. Also, the impact of the anthropogenic sulphate aerosol load and stratospheric ozone concentrations on the simulated climatic changes is investigated. For this particular climate model, the 2°C-stabilization scenario is characterized by the following atmospheric concentrations of the well-mixed greenhouse gases: 418 ppm (CO2), 2,026 ppb (CH4), and 331 ppb (N2O), 786 ppt (CFC-11) and 486 ppt (CFC-12), respectively. These greenhouse gas concentrations correspond to those for 2020 according to the SRES A1B scenario. At the same time, the anthropogenic sulphate aerosol load and stratospheric ozone concentrations are changed to the level in 2100 (again, according to the SRES A1B scenario), with a global anthropogenic sulphur dioxide emission of 28 TgS/year leading to a global anthropogenic sulphate aerosol load of 0.23 TgS. The future changes in climate associated with the 2°C-stabilization scenario show many of the typical features of other climate change scenarios, including those associated with stronger climatic forcings. That are a pronounced warming, particularly at high latitudes accompanied by a marked reduction of the sea-ice cover, a substantial increase in precipitation in the tropics as well as at mid- and high latitudes in both hemispheres but a marked reduction in the subtropics, a significant strengthening of the meridional temperature gradient between the tropical upper troposphere and the lower stratosphere in the extratropics accompanied by a pronounced intensification of the westerly winds in the lower stratosphere, and a strengthening of the westerly winds in the Southern Hemisphere extratropics throughout the troposphere. The magnitudes of these changes, however, are somewhat weaker than for the scenarios associated with stronger global warming due to stronger climatic forcings, such as the SRES A1B scenario. Some of the climatic changes associated with the 2°C-stabilization are relatively strong with respect to the magnitude of the simulated global warming, i.e., the pronounced warming and sea-ice reduction in the Arctic region, the strengthening of the meridional temperature gradient at the northern high latitudes and the general increase in precipitation. Other climatic changes, i.e., the El Niño like warming pattern in the tropical Pacific Ocean and the corresponding changes in the distribution of precipitation in the tropics and in the Southern Oscillation, are not as markedly pronounced as for the scenarios with a stronger global warming. A higher anthropogenic sulphate aerosol load (for 2030 as compared to the level in 2100 according to the SRES A1B scenario) generally weakens the future changes in climate, particularly for precipitation. The most pronounced effects occur in the Northern Hemisphere and in the tropics, where also the main sources of anthropogenic sulphate aerosols are located.  相似文献   
184.
A traditional mulching technique used in Lanzarote, Canary Islands, allows dry farming as well as pronounced water savings in irrigation. It is known to reduce evaporational losses, but is also supposed to enhance the nocturnal condensation of water vapour from the atmosphere. The mulch layer consists of porous volcanic rock fragments abundantly available on the island. The mulched surface is believed to cool rapidly and to be more hygroscopic than a bare soil surface. This was investigated during a field experiment conducted over 68 nights during different seasons in 2001 and 2002, as well as some simple laboratory measurements. It was found that nocturnal condensation on the mulch surface (max 0.33 mm) was lower than on the bare soil surface (max 0.57 mm) or any one of three alternative mulch substrates. However, a slightly stronger nocturnal cooling of the mulched as compared to the bare surface was present. It is shown that these contrary findings can be explained by the higher hygroscopicity of the dry loam soil, resulting in condensation gains beyond the strict definition of dew. Differences in plant-availability of non-hygroscopic dew water and hygroscopic water uptakes are discussed, and conditions under which mulching would show positive condensation effects are defined. This includes a theoretical section demonstrating that non-hygroscopic mulch layers of a proper thickness can provide small amounts of dew to plant roots at the mulch–soil interface. This condensation could also happen during the day and would be favoured by a high amplitude of the diurnal atmospheric moisture cycle.  相似文献   
185.
Impure limestones with interstratified metachert layers were contact metamorphosed and metasomatized by the Bufa del Diente alkali syenite. Massive marbles exhibit mineralogical and stable isotope evidence for limited fluid infiltration, confined to a 17 m wide zone at the contact. Influx of magmatic brines along most metacherts produced up to 4 cm thick wollastonite rims, according to calcite (Cc)+quartz (Qz)= wollastonite (Wo)+CO2, and were observed at distances of up to 400 m from the contact. The produced CO2 exsolved as an immiscible low density CO2-rich fluid. Chert protolith isotope compositions were 18O (Qz)=27–30%. and 18O (Cc)=24–27%.. Many wollastonites in infiltrated metacherts have low 18O ranging from 11–17 and confirm that decarbonation occurred in presence of a magmatic-signatured fluid. Large gradients in 18O (Wo) across the rims may reach 6 The 18O of remaining quartz is often lowered to 15–20 whereas caleites largely retained their original compositions. The isotopic reversals of up to 10 between quartz and calcite along with reaction textures demonstrate non-equilibrium between infiltrating fluid in the aquifer and the assemblage calcite+quartz+wollastonite. This is compatible with the assumption of a down-temperature flow of magmatic fluids that occurred exclusively in the remaining quarzite layer. The 13C (Cc) and 18O (Cc) of marble calcites measured perpendicular to two metachert bands reveal significant isotopic alterations along distances of 4.5 cm and 7.5 cm from the wollastonite-marble boundary only into the hanging wall marble, suggesting an advection process caused by a fluid phase which movel upwards. Covariation trends of 13C (Cc) and 18O (Cc) across the alteration front indicate that this fluid was CO2-rich. Mass balance calculations show that all CO2-rich fluid produced by the decarbonation reaction was lost into overlying marble. The metachert aquifers did not leak with respect to water-rich fluids.  相似文献   
186.
Hyphal penetration, mineral dissolution and neoformation at the lichen–rock interface have been widely characterized by microscopic and spectroscopic studies, and considered as proxies of lichen deterioration of stone substrates. However, these phenomena have not been clearly related to experimental data on physical properties related to stone durability, and the physical consequences of lichen removal from stone surfaces have also been overlooked. In this study, we combine microscopic and spectroscopic characterization of the structural organization of epi‐ and endolithic lichens (Caloplaca marina (Wedd.) Du Rietz, Caloplaca ochracea (Schaer.) Flagey, Bagliettoa baldensis (A.Massal.) Vězda, Porina linearis (Leight.) Zahlbr., Verrucaria nigrescens Pers.) at the interface with limestones of interest for Cultural Heritage (Portland Limestone, Botticino Limestone), with analysis of rock properties (water absorption, surface hardness) relevant for durability, before and after the removal or scraping of lichen thalli. Observations using reflected‐light and electron microscopy, and Raman analyses, showed lichen–limestone stratified interfaces, differing in the presence/absence and depth of lichen anatomical layers (lithocortex, photobiont layer, pervasive and sparse hyphal penetration component) depending on species and lithology. Specific structural organizations of lichen–rock interface were found to be associated with differential patterns of water absorption increase, evaluated by Karsten tube, in comparison with surfaces with microbial biofilms only, even more pronounced after the removal or scraping of the upper structural layers. Equotip measurements on surfaces bearing intact thalli showed lower hardness in comparison with control surfaces. By contrast, after the removal or scraping procedures, Equotip values were similar to or higher than those of controls, suggesting that the increasing open porosity may be related to a biogenic hardening process. Such counterposed patterns of porosity increase and hardening need to be considered when models relating lichen occurrence on limestones and biogeomorphological surface evolution are proposed, and to evaluate the consequences of lichen removal from stone‐built cultural heritage. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
187.
We studied sediment cores from Lake Vens (2,327 m asl), in the Tinée Valley of the SW Alps, to test the paleoseismic archive potential of the lake sediments in this particularly earthquake-sensitive area. The historical earthquake catalogue shows that moderate to strong earthquakes, with intensities of IX–X, have impacted the Southern Alps during the last millennium. Sedimentological (X-ray images, grain size distribution) and geochemical (major elements and organic matter) analyses show that Lake Vens sediments consist of a terrigenous, silty material (minerals and organic matter) sourced from the watershed and diatom frustules. A combination of X-ray images, grain-size distribution, major elements and magnetic properties shows the presence of six homogenite-type deposits interbedded in the sedimentary background. These sedimentological features are ascribed to sediment reworking and grain sorting caused by earthquake-generated seiches. The presence of microfaults that cross-cut the sediment supports the hypothesis of seismic deposits in this system. A preliminary sediment chronology is provided by 210Pb measurement and AMS 14C ages. According to the chronology, the most recent homogenite events are attributable to damaging historic earthquakes in AD 1887 (Ligure) and 1564 (Roquebillière). Hence, the Lake Vens sediment recorded large-magnitude earthquakes in the region and permits a preliminary estimate of recurrence time for such events of ~400 years.  相似文献   
188.
The Sr and Pb isotopes from the 31.6 ± 0.3 Ma (2σ) old Diente del Bufa alkali syenite, northeastern Mexico, and marbles of its contact aureole were used to trace the sources and the mobility of these metals during hydrothermal activity. Chert layers form aquifers within the marbles. The marbles represent aquitards. During fluid-wallrock reaction, the chert layers developed wollastonite rims. Early wollastonite rims have Sr and Pb isotopic compositions similar to those of their immediate host marbles, which indicates that the isotopic composition of Sr and Pb is initially buffered by the marble. Later wollastonite and other replacement minerals rimming the aquifer have Sr and Pb isotopic compositions that carry with time increasingly larger contributions from the high-salinity magmatic brine. The Sr and Pb contributions from the alkali syenite can be traced isotopically for more than 90 m away from the contact of the intrusion. In contrast, Sr and Pb originating from the alkali syenite are traceable within the marbles only for 3 to 5 cm from the aquifer-marble boundary. This distance is comparable to the spatial distribution of isotopic alterations of C and O implying that Sr and Pb were transported into the marbles through a fluid phase. The isotopic variation of Sr, Pb, C, and O across the aquifer-marble profiles reflects infiltration as a transport mechanism rather than diffusion. Because Sr and Pb are minor components in both the infiltrating fluid and the rock and because their concentrations are strongly affected by the distribution coefficients among the solid phases present, there is little correlation between the isotopic compositions of the trace elements Sr and Pb and those of C and O, which are major components in fluid and rock. Very thin meta-argillite rinds at the outer margin of the aquifer represent residual material after the dissolution of calcite. They are distinctly enriched in Rb, Sr, and U. The Rb and Sr are to some extent residual from the original limestone mineralogy, whereas U is dominantly derived from the magmatic fluid and leaked from the aquifer with the escaping immiscible CO2-rich H2O-CO2 fluid that was produced by decarbonation. The 238U/204Pb values ranging from 100 to 250 and distinctly lowered Th/U in the meta-argillite rims (1) demonstrate that U was transported with the magmatic fluid along the aquifer and (2) imply that during unmixing of the highly saline magmatic fluid U fractionated into the CO2-rich H2O-CO2 fluid from which it precipitated selectively in the meta-argillite band across the aquifer. Radioautographs demonstrate that the upper meta-argillite rim has 20 to 40 times more U than the lower rim, which implies that 20 to 40 times more CO2-rich H2O-CO2 fluid has left through the upper aquifer contact. Received: 30 September 1997 / Accepted: 15 December 1997  相似文献   
189.
Zusammenfassung Die plateauf?rmige Kuppe des Stromberges südlich von Blankenheim (Eifel) wird als lokal begrenzter Einkieselungshorizont im Mittleren Buntsandstein erkannt. Die zur Kl?rung seiner Genese durchgeführten petrographischen und magnetischen Untersuchungen haben ergeben, da? der Stromberg von einem ann?hernd pilzf?rmigen Vorkommen von Olivin-Nephelinit unterlagert ist. Es wird wahrscheinlich gemacht, da? über dem fast zentral gelegenen Zufuhrkanal durch Einwirkung von postvulkanischen alkalischen L?sungen und erh?hter W?rmeausstrahlung im Buntsandstein eine L?sung von Kiesels?ure erfolgte, die nach Abklingen dieser Einwirkungen im Grundwasserbereich dann zur Bildung eines Einkieselungshorizontes führte. Herrn Prof. Dr.Carl W. Correns zum 70. Geburtstag gewidmet.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号