首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1043篇
  免费   32篇
  国内免费   5篇
测绘学   41篇
大气科学   84篇
地球物理   219篇
地质学   346篇
海洋学   76篇
天文学   187篇
综合类   13篇
自然地理   114篇
  2022年   7篇
  2021年   13篇
  2020年   14篇
  2019年   22篇
  2018年   35篇
  2017年   20篇
  2016年   34篇
  2015年   23篇
  2014年   38篇
  2013年   75篇
  2012年   38篇
  2011年   44篇
  2010年   41篇
  2009年   63篇
  2008年   66篇
  2007年   52篇
  2006年   40篇
  2005年   38篇
  2004年   36篇
  2003年   42篇
  2002年   34篇
  2001年   28篇
  2000年   13篇
  1999年   19篇
  1998年   21篇
  1997年   14篇
  1996年   16篇
  1995年   12篇
  1994年   11篇
  1993年   10篇
  1992年   4篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   12篇
  1987年   4篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   16篇
  1982年   12篇
  1981年   5篇
  1980年   11篇
  1979年   9篇
  1978年   5篇
  1976年   6篇
  1975年   7篇
  1974年   4篇
  1972年   3篇
  1969年   3篇
排序方式: 共有1080条查询结果,搜索用时 14 毫秒
91.
Abstract. Nine allozyme and two minisatellite loci were used to investigate potential genetic differentiation among three samples of Mediterranean poor cod, Trisopterus minutus capelanus, from the Gulf of Lion, the Tuscan Archipelago and the Aegean Sea. Both types of markers showed consistent results, with FST values of 0.0262 and 0.0296 (P < 0.0015, after Bonferroni correction for multiple tests) for allozymes and minisatellites, respectively. Allele frequency heterogeneity tests between pairs of samples showed a clear separation between the two western Mediterranean samples (Gulf of Lion, Tuscan Archipelago) and the eastern one (Aegean Sea). The results indicate that at least two reproductively isolated populations of poor cod occur in the Mediterranean.  相似文献   
92.
This paper addresses global oxygenation and establishment of a marine sulphate reservoir in the Palaeoproterozoic. We report syn-depositional, marine, anhydrite-containing pseudomorphs after Ca-sulphates as widespread throughout the Tulomozero Formation in the SE Fennoscandian Shield, implying that surface waters were oxidized and a large SO marine reservoir was developed as early as 2100 Ma. The Ca-sulphates and associated magnesite and halite precipitated syn-depositionally from oxidized, evolved and modified seawater in coastal playa, sabkha and intertidal flat settings. 87Sr/86Sr and δ13C of associated 13C-rich stromatolitic dolostones were environmentally controlled with the highest ratios occurring in playa and sabkha carbonates. The results imply that the Palaeoproterozoic δ13Ccarb excursion was amplified by 8‰ by local environmental factors and calls into question many observations of putative δ13C global signals reported previously from similar Palaeoproterozoic, evaporitic, dolostones. The local environmental amplification can explain a large regional and intercontinental δ13C discrepancy observed in synchronous carbonates.  相似文献   
93.
Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and where pCO2 is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.  相似文献   
94.
The comment of Green et al. debates the interpretation of the temperature of the H2O-saturated peridotite solidus and presence of silicate melt in the experiments of Till et al. (Contrib Mineral Petrol 163:669–688, 2012) at <1,000?°C. The criticisms presented in their comment do not invalidate any of the most compelling observations of Till et al. (Contrib Mineral Petrol 163:669–688, 2012) as discussed in the following response, including the changing minor element and Mg# composition of the solid phases with increasing temperature in our experiments with 14.5?wt% H2O at 3.2?GPa, as well as the results of our chlorite peridotite melting experiments with 0.7?wt% H2O. The point remains that Till et al. (Contrib Mineral Petrol 163:669–688, 2012) present data that call into question the H2O-saturated peridotite solidus temperature preferred by Green (Tectonophysics 13(1–4):47–71, 1972; Earth Planet Sci Lett 19(1):37–53, 1973; Can Miner 14:255–268, 1976); Millhollen et al. (J Geol 82(5):575–587, 1974); Mengel and Green (Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions, Geological Society of Australia Special Publication, Blackwell, pp 571-581, 1989); Wallace and Green (Mineral Petrol 44:1–19, 1991) and Green et al. (Nature 467(7314):448–451, 2010).  相似文献   
95.
Numerical models constitute the most advanced physical-based methods for modeling complex ground water systems. Spatial and/or temporal variability of aquifer parameters, boundary conditions, and initial conditions (for transient simulations) can be assigned across the numerical model domain. While this constitutes a powerful modeling advantage, it also presents the formidable challenge of overcoming parameter uncertainty, which, to date, has not been satisfactorily resolved, inevitably producing model prediction errors. In previous research, artificial neural networks (ANNs), developed with more accessible field data, have achieved excellent predictive accuracy over discrete stress periods at site-specific field locations in complex ground water systems. In an effort to combine the relative advantages of numerical models and ANNs, a new modeling paradigm is presented. The ANN models generate accurate predictions for a limited number of field locations. Appending them to a numerical model produces an overdetermined system of equations, which can be solved using a variety of mathematical techniques, potentially yielding more accurate numerical predictions. Mathematical theory and a simple two-dimensional example are presented to overview relevant mathematical and modeling issues. Two of the three methods for solving the overdetermined system achieved an overall improvement in numerical model accuracy for various levels of synthetic ANN errors using relatively few constrained head values (i.e., cells), which, while demonstrating promise, requires further research. This hybrid approach is not limited to ANN technology; it can be used with other approaches for improving numerical model predictions, such as regression or support vector machines (SVMs).  相似文献   
96.
Soil formation results from opposite processes of bedrock weathering and erosion, whose balance may be altered by natural events and human activities, resulting in reduced soil depth and function. The impacts of vegetation on soil production and erosion and the feedbacks between soil formation and vegetation growth are only beginning to be explored quantitatively. Since plants require suitable soil environments, disturbed soil states may support less vegetation, leading to a downward spiral of increased erosion and decline in ecosystem function. We explore these feedbacks with a minimal model of the soil–plant system described by two coupled nonlinear differential equations, which include key feedbacks, such as plant‐driven soil production and erosion inhibition. We show that sufficiently strong positive plant–soil feedback can lead to a ‘humped’ soil production function, a necessary condition for soil depth bistability when erosion is assumed to vary monotonically with vegetation biomass. In bistable plant–soil systems, the sustainable soil condition engineered by plants is only accessible above a threshold vegetation biomass and occurs in environments where the high potential rate of erosion exerts a strong control on soil production and erosion. Vegetation removal for agriculture reduces the stabilizing effect of vegetation and lowers the system resilience, thereby increasing the likelihood of transition to a degraded soil state. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
97.
In a recent paper published in Journal of Mountain Science, Malanson (2017) explored variance changes in Rocky Mountains tree-ring chronologies. This commentary points out some methodological issues related to systematic bias in evolving tree-ring chronology variance and suggests that analyzing the slopes of linear regression lines may be suboptimal for identifying temporal changes in variance. The journal editor invited the original article’s authors Dr. Malandson to respond to the comments. Thus Dr. Malandson’s response is attached behind the comments.  相似文献   
98.
OPA 90 set out stringent requirements and liabilities for tankers operating in US national waters. OPA 90 was in response to the public concern caused by the grounding of the Exxon Valdez in 1989. It made ship owners responsible for the cost of pollution incidents and required all tank ships/barges operating in US waters have double hulls by 2015. We model factors influencing oil spills and test whether OPA 90 helped reduce the number of those spills. After accounting for causal factors, both increased liability and double hulls were statistically significant factors in reducing the number of spills.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号