首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   7篇
  国内免费   4篇
测绘学   5篇
大气科学   44篇
地球物理   85篇
地质学   130篇
海洋学   31篇
天文学   77篇
综合类   3篇
自然地理   25篇
  2020年   4篇
  2019年   5篇
  2018年   3篇
  2017年   8篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   13篇
  2012年   6篇
  2011年   14篇
  2010年   7篇
  2009年   14篇
  2008年   15篇
  2007年   16篇
  2006年   15篇
  2005年   14篇
  2004年   17篇
  2003年   18篇
  2002年   14篇
  2001年   10篇
  2000年   11篇
  1999年   14篇
  1998年   7篇
  1997年   7篇
  1996年   8篇
  1994年   14篇
  1993年   9篇
  1992年   4篇
  1991年   2篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   7篇
  1982年   7篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1972年   3篇
  1924年   2篇
  1923年   2篇
排序方式: 共有400条查询结果,搜索用时 15 毫秒
21.
The authors’ work on mine systems, combines field and laboratory integrated microbial geochemical investigation with high-resolution techniques enabling characterization and visualization at the bacterium scale (i.e. STXM). The results indicate a repeated motif of socially organized microbial cooperation occurring within microbial consortial macrostructures (pods). The pod structure directly enables the specific geochemical processes linked to the metabolic function of the consortial members. These microbially linked geochemical processes have important ramifications for bulk system geochemistry that were previously unknown. Results from two examples: (1) microbial metal interactions within AMD biofilms and (2) sulfur redox cycling by a novel consortia within mine waters, illustrate how the ecology of the pod consortia is linked to pod biogeochemical macrostructure as well as to the resulting geochemistry associated with pod metabolism. In both instances the pod structures enabled the associated consortia to carry out reactions not predicted by classic geochemical understanding of these systems. Investigation of AMD biofilm biogeochemical architecture capturing the micro-scale linkages amongst geochemical gradients, metal dynamics and depth resolved micro-organism community structure, illustrated a novel biomineralization process driven by biofilm associated pods controlling biofilm metal capture. Similarly, the groups’ recent discovery of an environmental S redox cycling, pod-forming, consortium revealed ecologically driven S cycling with previously unknown implications for both AMD mitigation and AMD carbon flux modeling. These results highlight how microbes cooperatively orchestrate their geochemical environment, underscoring the need to consider syntrophic community activity in environmental processes and the requirement for integrated, high-resolution techniques spanning geochemistry, molecular microbiology and imaging to reveal the biogeochemistry involved.  相似文献   
22.
Major and trace element analyses of over 180 individual chondrules from 12 carbonaceous chondrites are reported, including individual analyses of 60 chondrules from Pueblito de Allende. Siderophile elements in most chondrules are depleted, compared to the whole chondrite. Correlations of Al-Ir and Ir-Sc among chondrules high in Ca and Al were observed. A Cu-Mn correlation was also found for chondrules from some meteorites. No correlation was observed between Au and other siderophile elements (Fe, Ni, Co and Ir). It is suggested that these elemental associations were present in the material from which the chondrules formed. Compositionally, chondrules appear to be a multicomponent mixture of remelted dust. One component displaying an Al-Ir correlation is identified as Allende-type white aggregates. The other components are a material chemically similar to the present matrix and sulfides-plus-metal material. Abundances of the REE (rare earth elements) were measured in ‘ordinary’ Allende chondrules and were 50% higher than REE abundances in Mokoia chondrules; REE abundances in Ca-Al rich chondrules were similar to REE abundances in Ca-rich white aggregates.  相似文献   
23.
Atmospheric dimethyl sulfide (DMS) and sulfur dioxide (SO2) concentrations were measured at Baring Head, New Zealandduring February and March 2000. Anti-correlated DMS and SO2 diurnalcycles, consistent with the photochemical production of SO2 from DMS, were observed in clean southerly air off the ocean. The data is used to infer a yield of SO2 from DMS oxidation. The estimated yields are highly dependent on assumptions about the DMS oxidation rate. Fitting the measured data in a photochemical box model using model-generated OH levels and the Hynes et al. (1986) DMS + OH rate constant suggests that theSO2 yield is 50–100%, similar to current estimates for the tropical Pacific.However, the observed amplitude of the DMS diurnal cycle suggests that the oxidation rate is higher than that used by the model, and therefore, that theSO2 yield is lower in the range of 20–40%.  相似文献   
24.
It was remarked by Hurst in 1951 that the adjusted range gives the size of the smallest reservoir capable of providing a constant discharge equal to the mean inflow. Since that time this range and its rescaled modification, the Hurst range, have been widely discussed, not however primarily with a view to applying them to reservoir design problems, but rather on account of their possible relevance to the simulation of geophysical time series.Acknowledging the well-known conceptual weaknesses of adjusted ranges and the theoretical difficulties that inhibit their direct utilisation in the design and operation of real reservoirs, the authors argue that the interest displayed on ranges during the past few decades justifies the effort of eliminating one in particular of these weakness, namely their non-implementability as operating policies, a consequence of the fact that they can only be retrospectively evaluated. The paper proposes modifications in which the unknowable mean and standard deviation of future samples are replaced by the known mean and sample standard deviation of historical data, leading to the historically adjusted range and the historically rescaled and adjusted range. The latter is produced as an implementable approximation to Hurst's (1951) solution to the optimal reservoir problem.The expected values of the new ranges are evaluated and numerically tabulated.  相似文献   
25.
Photolysis rates of phenanthrene as a function of ionic strength (salinity), oxygen levels and humic acid concentrations were measured in aqueous solution over the range of conditions found in fresh to marine waters. Photolysis followed first order kinetics, with an estimated photodegradation half-life in sunlight in pure water of 10.3±0.7h, in the mid-range of published results. Photolysis rate constants decreased by a factor of 5 in solutions with humic acid concentrations from 0 to 10 mg C L(-1). This decrease could be modeled entirely based on competitive light absorption effects due to the added humics. No significant ionic strength or oxygen effects were observed, consistent with a direct photolysis mechanism. In the absence of significant solution medium effects, the photodegradation lifetime of phenanthrene will depend only on solar fluxes (i.e. temporal and seasonal changes in sunlight) and not vary with a freshwater to marine environment.  相似文献   
26.
It has long been customary to assume that in the bulk composition of the Earth, all refractory-lithophile elements (including major oxides Al2O3 and CaO, all of the REE, and the heat-producing elements Th and U) occur in chondritic, bulk solar system, proportion to one another. Recently, however, Nd-isotopic studies (most notably Boyet M. and Carlson R. W. (2006) A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth Planet. Sci. Lett.250, 254-268) have suggested that at least the outer portion of the planet features a Nd/Sm ratio depleted to ∼0.93 times the chondritic ratio. The primary reaction to this type of evidence has been to invoke a “hidden” reservoir of enriched matter, sequestered into the deepest mantle as a consequence of primordial differentiation. I propose a hypothesis that potentially explains the evidence for Nd/Sm depletion in a very different way. Among the handful of major types of differentiated asteroidal meteorites, two (ureilites and aubrites) are ultramafic restites so consistently devoid of plagioclase that meteoriticists were once mystified as to how all the complementary plagioclase-rich matter (basalt) was lost. The explanation appears to be basalt loss by graphite-fueled explosive volcanism on roughly 100-km sized planetesimals; with the dispersiveness of the process dramatically enhanced, relative to terrestrial experience, because the pyroclastic gases expand into vacuous space (Wilson L. and Keil K. (1991) Consequences of explosive eruptions on small Solar System bodies: the case of the missing basalts on the aubrite parent body. Earth Planet. Sci. Lett.104, 505-512). By analogy with lunar pyroclastic products, the typical size of pyroclastic melt/glass droplets under these circumstances will be roughly 0.1 mm. Once separated from an asteroidal or planetesimal gravitational field, droplets of this size will generally spiral toward the Sun, rather than reaccrete, because drag forces such the Poynting-Robertson effect quickly modify their orbits (the semimajor axis, in a typical scenario, is reduced by several hundred km during the first trip around the Sun). Assuming a similar process occurred on many of the Earth’s precursor planetesimals while they were still roughly 100 km in diameter, the net effect would be a depleted composition for the final Earth. I have modeled the process of trace-element depletion in the planetesimal mantles, assuming the partial melting was nonmodal and either batch or dynamic in terms of the melt-removal style. Assuming the process is moderately efficient, typical final-Earth Nd/Sm ratios are 0.93-0.96 times chondritic. Depletion is enhanced by a relatively low assumed residual porosity in batch-melting scenarios, but dampened by a relatively high value for “continuous” residue porosity in dynamic melting scenarios. Pigeonite in the source matter has a dampening effect on depletion. There are important side effects to the Nd/Sm depletion. The heat-producing elements, Th, U and K, might be severely depleted. The Eu/Eu ratio of the planet is unlikely to remain precisely chondritic. One of the most inevitable side effects, depletion of the Al/Ca ratio, is consistent with an otherwise puzzling aspect of the composition of the upper mantle. A perfectly undepleted composition for the bulk Earth is dubious.  相似文献   
27.
28.
This study presents results on the fluid and salt chemistry for the Makgadikgadi, a substantial continental basin in the semi-arid Kalahari. The aims of the study are to improve understanding of the hydrology of such a system and to identify the sources of the solutes and the controls on their cycling within pans. Sampling took place against the backdrop of unusually severe flooding as well as significant anthropogenic extraction of subsurface brines. This paper examines in particular the relationship between the chemistry of soil leachates, fresh stream water, salty lake water, surface salts and subsurface brines at Sua Pan, Botswana with the aim of improving the understanding of the system’s hydrology. Occasionally during the short wet season (December–March) surface water enters the saline environment and precipitates mostly calcite and halite, as well as dolomite and traces of other salts associated with the desiccation of the lake. The hypersaline subsurface brine (up to TDS 190,000 mg/L) is homogenous with minor variations due to pumping by BotAsh mine (Botswana Ash (Pty) Ltd.), which extracts 2400 m3 of brine/h from a depth of 38 m. Notable is the decrease in TDS as the pumping rate increases which may be indicative of subsurface recharge by less saline water. Isotope chemistry for Sr (87Sr/86Sr average 0.722087) and S (δ34S average 34.35) suggests subsurface brines have been subject to a lithological contribution of undetermined origin. Recharge of the subsurface brine from surface water including the Nata River appears to be negligible.  相似文献   
29.
Results are presented from two versions of a global R15 atmospheric general circulation model (GCM) coupled to a nondynamic, 50-m deep, slab ocean. Both versions include a penetrative convection scheme that has the effect of pumping more moisture higher into the troposphere. One also includes a simple prescribed functional dependence of cloud albedo in areas of high sea-surface temperature (SST) and deep convection. Previous analysis of observations has shown that in regions of high SST and deep convection, the upper-level cloud albedos increase as a result of the greater optical depth associated with increased moisture content. Based on these observations, we prescribe increased middle- and upper-level cloud albedos in regions of SST greater than 303 K where deep convection occurs. This crudely accounts for a type of cloud optical property feedback, but is well short of a computed cloud-optical property scheme. Since great uncertainty accompanies the formulation and tuning of such schemes, the prescribed albedo feedback is an intermediate step to examine basic feedbacks and sensitivities. We compare the two model versions (with earlier results from the same model with convective adjustment) to a model from the Canadian Climate Centre (CCC) having convective adjustment and a computed cloud optical properties feedback scheme and to several other GCMs. The addition of penetrative convection increases tropospheric moisture, cloud amount, and planetary albedo and decreases net solar input at the surface. However, the competing effect of increased downward infrared flux (from increased tropospheric moisture) causes a warmer surface and increased latent heat flux. Adding the prescribed cirrus albedo feedback decreases net solar input at the surface in the tropics, since the cloud albedos increase in regions of high SST and deep convection. Downward infrared radiation (from increased moisture) also increases, but this effect is overpowered by the reduced solar input in the tropics. Therefore, the surface is somewhat cooler in the tropics, latent heat flux decreases, and global average sensitivity to a doubling of CO2 with regard to temperature and precipitation/evaporation feedback is reduced. Similar processes, evident in the CCC model with convective adjustment and a computed cloud optical properties feedback scheme, occur over a somewhat expanded latitudinal range. The addition of penetrative convection produces global effects, as does the prescribed cirrus albedo feedback, although the strongest local effects of the latter occur in the tropics.Portions of this study are supported by the Office of Health and Environmental Research of the U.S. Department of Energy as part of its Carbon Dioxide Research Program, and by the Electric Power Research Institute as part of its Model Evaluation Consortium for Climate Assessment ProjectThe National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   
30.
On the basis of the newest interpretations of all sufficiently long seismic profiles, a contour map of the Mohorovi?i? discontinuity for the conterminous United States is compiled. Differences from earlier interpretations are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号