首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  国内免费   2篇
地球物理   1篇
地质学   5篇
天文学   12篇
  2020年   2篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  1985年   1篇
  1978年   1篇
  1976年   2篇
排序方式: 共有18条查询结果,搜索用时 0 毫秒
11.
Saturn’s moon Rhea is thought to be a simple plasma absorber, however, energetic particle observations in its vicinity show a variety of unexpected and complex interaction features that do not conform with our current understanding about plasma absorbing interactions. Energetic electron data are especially interesting, as they contain a series of broad and narrow flux depletions on either side of the moon’s wake. The association of these dropouts with absorption by dust and boulders orbiting within Rhea’s Hill sphere was suggested but subsequently not confirmed, so in this study we review data from all four Cassini flybys of Rhea to date seeking evidence for alternative processes operating within the moon’s interaction region. We focus on energetic electron observations, which we put in context with magnetometer, cold plasma density and energetic ion data. All flybys have unique features, but here we only focus on several structures that are consistently observed. The most interesting common feature is that of narrow dropouts in energetic electron fluxes, visible near the wake flanks. These are typically seen together with narrow flux enhancements inside the wake. A phase-space-density analysis for these structures from the first Rhea flyby (R1) shows that Liouville’s theorem holds, suggesting that they may be forming due to rapid transport of energetic electrons from the magnetosphere to the wake, through narrow channels. A series of possibilities are considered to explain this transport process. We examined whether complex energetic electron drifts in the interaction region of a plasma absorbing moon (modeled through a hybrid simulation code) may allow such a transport. With the exception of several features (e.g. broadening of the central wake with increasing electron energy), most of the commonly observed interaction signatures in energetic electrons (including the narrow structures) were not reproduced. Additional dynamical processes, not simulated by the hybrid code, should be considered in order to explain the data. For the small scale features, the possibility that a flute (interchange) instability acts on the electrons is discussed. This instability is probably driven by strong gradients in the plasma pressure and the magnetic field magnitude: magnetometer observations show clearly signatures consistent with the (expected) plasma pressure loss due to ion absorption at Rhea. Another potential driver of the instability could have been gradients in the cold plasma density, which are, however, surprisingly absent from most crossings of Rhea’s plasma wake. The lack of a density depletion in Rhea’s wake suggests the presence of a local cold plasma source region. Hybrid plasma simulations show that this source cannot be the ionized component of Rhea’s weak exosphere. It is probably related to accelerated photoelectrons from the moon’s negatively charged surface, indicating that surface charging may play a very important role in shaping Rhea’s magnetospheric interaction region.  相似文献   
12.
Mathematical Geosciences - Unfortunately, in the original version of the article the first and second name of the fourth author were wrong.  相似文献   
13.
We report on Cassini Imaging Science Subsystem (ISS) data correlated with Radio and Plasma Wave Science (RPWS) observations, which indicate lightning on Saturn. A rare bright cloud erupt at ∼35° South planetocentric latitude when radio emissions (Saturn Electrostatic Discharges, or SEDs) occur. The cloud consisting of few consecutive eruptions typically lasts for several weeks, and then both the cloud and the SEDs disappear. They may reappear again after several months or may stay inactive for a year. Possibly, all the clouds are produced by the same atmospheric disturbance which drifts West at 0.45 °/day. As of March 2007, four such correlated visible and radio storms have been observed since Cassini Saturn Orbit Insertion (July 2004). In all four cases the SEDs are periodic with roughly Saturn's rotation rate (h10m39), and show correlated phase relative to the times when the clouds are seen on the spacecraft-facing side of the planet, as had been shown for the 2004 storms in [Porco, C.C., and 34 colleagues, 2005. Science 307, 1243-1247]. The 2000-km-scale storm clouds erupt to unusually high altitudes and then slowly fade at high altitudes and spread at low altitudes. The onset time of individual eruptions is less than a day during which time the SEDs reach their maximum rates. This suggests vigorous atmospheric updrafts accompanied by strong precipitation and lightning. Unlike lightning on Earth and Jupiter, where considerable lightning activity is known to exist, only one latitude on Saturn has produced lightning strong enough to be detected during the two and a half years of Cassini observations. This may partly be a detection issue.  相似文献   
14.
During 2004 the Cassini/RPWS (Radio and Plasma Wave Science) instrument recorded about 5400 SEDs (Saturn Electrostatic Discharges), which were organized in 4 storm systems and 95 episodes. A computer algorithm with different intensity thresholds was applied to extract the SEDs from the RPWS data, and a statistical analysis on the main characteristics of these SEDs is performed. Compared to the SEDs recorded by the Voyagers in the early 1980s, some characteristics like SED rate, intensity, signal duration, or power spectrum are similar, but there are also remarkable differences with regard to time occurrence and frequency range: The first appearance of SEDs (storm 0) was recorded by RPWS from a distance of more than 300 Saturn radii at the end of May 2004, followed by storm A in mid-July, storm B at the beginning of August, and the most prominent storm C throughout most of September. There were also significant intervals of time with no detectable SED activity, e.g., SEDs were practically absent from October 2004 until June 2005. No clear indication for SEDs below a frequency of 1.3 MHz could be found. We suggest that the SED storms A, B, C, and possibly also storm 0 originate from the same storm system residing at a latitude of 35° South, which lasted for several months, waxed and waned in strength, and rotated with the Voyager radio period of Saturn. The SED source might be located in the updrafting water clouds beneath the visible cloud features detected in the Cassini images.  相似文献   
15.
Mathematical Geosciences - In the current era of big data and machine learning, a strong focus exists on prediction and classification. In industrial applications, however, many important questions...  相似文献   
16.
Radio signatures of lightning discharges have been detected by the Voyager spacecraft near Saturn and Uranus up to 40 MHz. Corresponding flux densities at the distance of the Earth are up to 1000 Jansky (Jy) for Saturn (1 event per minute above 50 Jy, with 30–300 ms duration) and up to a few tens of Jansky for Uranus. Low Frequency ARray LOFAR will allow us to detect and monitor the lightning activity at these two planets. Imaging will allow us to locate lightning sources on Saturn's disk (even if with moderate accuracy), which could then be correlated to optical imaging of clouds. Such observations could provide new information on electrification processes, atmospheric dynamics, composition, and geographical and seasonal variations, compared to the Earth. In addition, lightning may play a role in the atmospheric chemistry, through the production of non-equilibrium trace organic constituents potentially important for biological processes. LOFAR observations can also help us to assess the existence of lightning at Neptune (marginally detected by Voyager), at Venus (where their existence is very controversial), and at Mars (possibly resulting from dust cloud charging). At Jupiter, low-altitude ionospheric layers of meteoritic origin and/or intrinsically long discharge duration seem to prevent the emission and escape of high-frequency radio waves associated with lightning. LOFAR thus presents good possibilities for the detection and study of solar system planetary lightning; we also discuss its relevance to bring new information on Terrestrial lightning-related upper atmosphere transient phenomena (sprites, TIPPs…). Instrumental constraints are outlined.  相似文献   
17.
Hubert and Samsonov addressed our paper published in early 2010 (Bebesi et al., 2010) about a plasma event detected in the magnetosheath of Jupiter by the plasma instruments of the Cassini spacecraft. We proposed that the characteristics of the plasma parameter variations were consistent with a slow mode shock (SMS). As our title indicated, we claimed only that the event was a possible “candidate” for an SMS according to our data, which had some restrictions as discussed in the paper. As to the origin, we proposed the following: since there was a crossing of the then highly tilted Heliospheric Current Sheet in less than two days before the event, it might have played a role in initiating the shock front.We highly appreciate the opinion of the authors, but they do not point out any hard fact that would exclude the possibility of the scenario we suggested.  相似文献   
18.
The Voyager 1 observations of whistlers at Jupiter are summarized in order to provide a basis for further analyses of the density profile of the Io plasma torus as well as to support studies of atmospheric lightning at Jupiter. All the whistlers detected by Voyager I fell into three general regions in the torus at radial distances ranging between 5 and 6RJ. An analysis of the broadband wave amplitudes measured by the Voyager 1 plasma wave instrument and estimates of the peak whistler amplitudes imply that the grouping of whistlers was due to variations in the sensitivity of the receiver to the whistlers and not to variations in the source or propagation paths of the whistlers. The whistler dispersions are presented in statistical form for each of the three groups of events and analyzed in view of the structure of the Io plasma torus as determined by plasma measurements. The results of these analyses give source locations for the whistlers at the foot of the magnetic field lines threading the torus in both hemispheres and over a range of longitudes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号