首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   4篇
测绘学   11篇
大气科学   8篇
地球物理   64篇
地质学   25篇
海洋学   14篇
天文学   21篇
自然地理   11篇
  2022年   2篇
  2021年   1篇
  2019年   6篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   1篇
  2011年   4篇
  2010年   14篇
  2009年   19篇
  2008年   12篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1964年   1篇
  1954年   1篇
  1941年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
81.
Summary ?Intra-mountain summertime precipitation was studied in the Alps in a 40×20 km2 area centered around Innsbruck, Austria, from June through September 1997. An observational network with a mean separation distance of 9 km and forecasts from the ECMWF model were used to examine the role the strong forcing from the lower boundary plays in creating “hot spots” for the formation of thunderstorms and the location of heavy precipitation as well as systematic precipitation patterns for different weather situations, which can be used to downscale forecasts from global scale routine numerical weather prediction models. Received March 16, 1999/Revised August 20, 1999  相似文献   
82.
High-resolution records of the natural radionuclide230Th were measured in sediments from the eastern Atlantic sector of the Antarctic circumpolar current to obtain a detailed reconstruction of the sedimentation history of this key area for global climate change during the late Quaternary. High-resolution dating rests on the assumption that the230Thex flux to the sediments is constant. Short periods of drastically increased sediment accumulation rates (up to a factor of 8) were determined in the sediments of the Antarctic zone during the climate optima at the beginning of the Holocene and the isotope stage 5e. By comparing expected and measured accumulation rate of230Thex, lateral sediment redistribution was quantified and vertical particle rain rates originating from the surface water above were calculated. We show that lateral contributions locally were up to 6.5 times higher than the vertical particle rain rates. At other locations only 15% of the expected vertical particle rain rate were deposited.  相似文献   
83.
Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is challenging because of the rarity of calcareous (micro‐) fossils and the recycling of fossil organic matter. Consequently, radiocarbon (14C) ages of the acid‐insoluble organic fraction (AIO) of the sediments bear uncertainties that are difficult to quantify. Here we present the results of three different methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk samples yielded age reversals down‐core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom‐rich unit yielded similar uncorrected 14C ages between 13 517 ± 56 and 11 543 ± 47 years before present (a BP). Correction of these ages by subtracting the core‐top ages, which probably reflect present‐day deposition (as indicated by 210Pb dating of the sediment surface at one core site), yielded ages between ca. 10 500 and 8400 cal. a BP. Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1300 a indicated deposition of the diatom‐rich sediments between 14 100 and 11 900 cal. a BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka for the diatom‐rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves. As a third dating technique we applied conventional radiocarbon dating of the AIO included in acid‐cleaned diatom hard parts extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5111 ± 38 and 5106 ± 38 a BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom‐rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes elsewhere on the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
84.
Information included in this summary is based on more detailed reports published in the Bulletin of the Global Volcanism Network, vol. 32, no. 8, August 2007 (on the Internet at ). Edited by scientists at the Smithsonian, this bulletin includes reports provided by a worldwide network of correspondents. The reports contain the names and contact information for all sources. Please note that these reports are preliminary and subject to change as events are studied in more detail. The Global Volcanism Program welcomes further reports of current volcanism, seismic unrest, monitoring data, and field observations.  相似文献   
85.
It is shown, using an organic and an inorganic glass, that, in a relaxing material, the compressibility consists of two parts, an instantaneous (dynamic) part and a delayed part. The instantaneous part amounts to about 2/3 of the total (static) compressibility. From consideration of relaxation times it is seen that, in the mantle of the earth, the density has to be calculated using the static compressibility, while seismic velocity curves give the dynamic value. Density curves are calculated on the basis of an essentially homogeneous earth interior derived from hot solar material.  相似文献   
86.
Eight years of sea surface height data derived from the TOPEX/Poseidon altimeter, are analyzed in order to identify long- and a-periodic behavior of the North Atlantic sea level. For easy interpolation, sea surface height data are converted into sea surface topography data using the geoid derived from EGM96 to degree 360. Principal Component Analysis is used to identify the most dominant spatial and temporal variations. In order to separate dominant periodic signals, a yearly and a half-yearly oscillation, as well as alias effects from imperfect ocean tide corrections, are estimated independently by a Harmonic Analysis and subtracted. The residuals are smoothed by a 90-day moving average filter and examined once again by a PCA, which identifies a low-frequency variation with a period of approximately 6–7 years and an amplitude of about 1 dm, as well as a large sea level change of partially more than ±1 dm within only few months. This sea level change can also be seen in yearly and seasonal sea level residuals. Furthermore, the analysis shows a significant sea level change in 1998 occurring almost over the whole North Atlantic, which is not clearly identified by the PCA. Similar results are obtained by analyzing sea surface temperature and sea level pressure data.  相似文献   
87.
We present three new benthic foraminiferal δ13C, δ18O, and total organic carbon time series from the eastern Atlantic sector of the Southern Ocean between 41°S and 47°S. The measured glacial δ13C values belong to the lowest hitherto reported. We demonstrate a coincidence between depleted late Holocene (LH) δ13C values and positions of sites relative to ocean surface productivity. A correction of +0.3 to +0.4 [‰ VPDB] for a productivity-induced depletion of Last Glacial Maximum (LGM) benthic δ13C values of these cores is suggested. The new data are compiled with published data from 13 sediment cores from the eastern Atlantic Ocean between 19°S and 47°S, and the regional deep and bottom water circulation is reconstructed for LH (4–0 ka) and LGM (22–16 ka) times. This extends earlier eastern Atlantic-wide synoptic reconstructions which suffered from the lack of data south of 20°S. A conceptual model of LGM deep-water circulation is discussed that, after correction of southernmost cores below the Antarctic Circumpolar Current (ACC) for a productivity-induced artifact, suggests a reduced formation of both North Atlantic Deep Water in the northern Atlantic and bottom water in the southwestern Weddell Sea. This reduction was compensated for by the formation of deep water in the zone of extended winter sea-ice coverage at the northern rim of the Weddell Sea, where air–sea gas exchange was reduced. This shift from LGM deep-water formation in the region south of the ACC to Holocene bottom water formation in the southwestern Weddell Sea, can explain lower preformed δ13CDIC values of glacial circumantarctic deep water of approximately 0.3‰ to 0.4‰. Our reconstruction brings Atlantic and Southern Ocean δ13C and Cd/Ca data into better agreement, but is in conflict, however, with a scenario of an essentially unchanged thermohaline deep circulation on a global scale. Benthic δ18O-derived LGM bottom water temperatures, by 1.9°C and 0.3°C lower than during the LH at deepest southern and shallowest northern sites, respectively, agree with the here proposed reconstruction of deep-water circulation in the eastern South Atlantic Ocean.  相似文献   
88.
Ferromanganese microcrusts were found in oxic sediments that are undisturbed between 60 and 480 cm bsf. Rhythmic alternations of muddy calcareous ooze and foraminiferal-nannofossil ooze make up the sediment sequence, which extends to 270 ka at 480 cm bsf where a hiatus of at least 1.3 Myr occurs. The bottom of the core is Pliocene. The occurrence of ferromanganese microcrusts mainly formed on foraminifera tests larger than 200 μm can be correlated with glacial stages 4, 6 and 8 and indicates enhanced metal fluxes. They do not form at the expense of carbonate material but derive their metals from the water column by hydrogenetic precipitation. Manganese was supplied as Mn2+ mainly from the oxygen minimum zone (OMZ), where it is transported via detrital material and brought into solution by weakly reducing conditions promoted by the oxidation of organic matter. An enhanced detrital flux during glacials may also cause increased Mn availability in the OMZ during these periods. Mixing of oxygen-rich intermediate water with OMZ water during the glacial intervals caused Mn2+ oxidation in the water column underneath the OMZ.  相似文献   
89.
Information included in this summary is based on more detailed reports published in the Bulletin of the Global Volcanism Network, vol. 34, no. 1, January 2009 (on the Internet at ). Edited by scientists at the Smithsonian, this bulletin includes reports provided by a worldwide network of correspondents. The reports contain the names and contact information for all sources. Please note that these reports are preliminary and subject to change as events are studied in more detail. The Global Volcanism Program welcomes further reports of current volcanism, seismic unrest, monitoring data, and field observations.  相似文献   
90.
Sedimentary processes and structures across the continental rise in the western Weddell Sea have been investigated using sediment acoustic and multichannel seismic data, integrated with multibeam depth sounding and core investigations. The results show that a network of channels with associated along-channel ridges covers the upper continental slope. The seismic profiles reveal that the channels initially developed as erosive turbidite channels with associated levees on their northern side due to Coriolis force. Later they were partly or fully infilled, probably as a result of decreasing turbidite activity. Now the larger ones exist as erosive turbidite channels of reduced size, whereas the smaller ones are non-erosive channels, their shape being maintained by contour current activity. Drift bodies only developed where slumps caused a distinctive break in slope inclination on the upper continental rise, which served to initiate the growth of a drift body fed by contour currents or by the combined action of turbidites and contourites. The history of sedimentation can be reconstructed tentatively by correlation of seismo-stratigraphic units with the stages of evolution of the drifts on the western side of the Antarctic Peninsula. Three stages can be distinguished in the western Weddell Sea after a pre-drift stage, which is delimited by an erosional unconformity at the top: (1) a growth stage, dominated by turbidites, with occasional occurrence of slumps during its initial phase; (2) during a maintenance stage turbiditiy-current intensity (and presumably sedimentation rate also) decreased, probably as a result of the ice masses retreating from the shelf edge, and sedimentation became increasingly dominated by contour current activity; and (3) a phase of sheeted-sequence formation. A southward decrease in sediment thickness shows that the Larsen Ice Shelf plays an important role in sediment delivery to the western Weddell Sea. This study shows that the western Weddell Sea has some characteristics in common with the southern as well as the northwestern Weddell Sea: contour currents off the Larsen Ice Shelf have been present for a long time, probably since the late Miocene, but during times of high sediment input from the shelves as a result of advancing ice masses a channel-levee system developed and dominated over the contour-current transport of sediment. At times of relatively low sediment input the contour-current transport dominated, leading to the formation of drift deposits on the upper continental rise. Seaward of areas without shelf ice masses the continental rise mainly shows a rough topography with small channels and underdeveloped levees. The results demonstrate that sediment supply is an important, maybe the controlling factor of drift development on the Antarctic continental rise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号