首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   8篇
大气科学   11篇
地球物理   35篇
地质学   13篇
海洋学   9篇
天文学   60篇
自然地理   3篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   4篇
  2016年   10篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2009年   1篇
  2008年   1篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1967年   1篇
排序方式: 共有131条查询结果,搜索用时 0 毫秒
31.
ABSTRACT

Consideration of solar geoengineering as a potential response to climate change will demand complex decisions. These include not only the choice of whether to deploy solar engineering, but decisions regarding how to deploy, and ongoing decision-making throughout deployment. Research on the governance of solar geoengineering to date has primarily engaged only with the question of whether to deploy. We examine the science of solar geoengineering in order to clarify the technical dimensions of decisions about deployment – both strategic and operational – and how these might influence governance considerations, while consciously refraining from making specific recommendations. The focus here is on a hypothetical deployment rather than governance of the research itself. We first consider the complexity surrounding the design of a deployment scheme, in particular the complicated and difficult decision of what its objective(s) would be, given that different choices for how to deploy will lead to different climate outcomes. Next, we discuss the on-going decisions across multiple timescales, from the sub-annual to the multi-decadal. For example, feedback approaches might effectively manage some uncertainties, but would require frequent adjustments to the solar geoengineering deployment in response to observations. Other decisions would be tied to the inherently slow process of detection and attribution of climate effects in the presence of natural variability. Both of these present challenges to decision-making. These considerations point toward particular governance requirements, including an important role for technical experts – with all the challenges that entails.

Key policy insights
  • Decisions about solar geoengineering deployment will be informed not only by political choices, but also by climate science and engineering.

  • Design decisions will pertain to the spatial and temporal goals of a climate intervention and strategies for achieving those goals.

  • Some uncertainty can be managed through feedback, but this would require frequent operational decisions.

  • Some strategic decisions will depend on the detection and attribution of climatic effects from solar geoengineering, which may take decades.

  • Governance for solar geoengineering deployment will likely need to incorporate technical expertise for making short-term adjustments to the deployment and conducting attribution analysis, while also slowing down decisions made in response to attribution analysis to avoid hasty choices.

  相似文献   
32.
All the finite strain equations that we are aware of that are worth considering in connection with the interior of the Earth are given, with the assumptions on which they are based and corresponding relationships for incompressibility and its pressure derivatives in terms of density. In several cases, equations which have been presented as new or independent are shown to be particular examples of more general equations that are already familiar. Relationships for deriving finite strain equations from atomic potential functions or vice versa are given and, in particular it is pointed out that the Birch-Murnaghan formulation implies a sum of power law potentials with even powers. All the equations that survive simple plausibility tests are fitted to the lower mantle and outer core data for the PEM earth model. For this purpose the model data are extrapolated to zero temperature, using the Mie-Grüneisen equation to subtract the thermal pressure (at fixed density) and the pressure derivative of this equation to substract the thermal component of incompressibility. Fitting of finite strain equations to such zero temperature data is less ambiguous than fitting raw earth model data and leads immediately to estimates of the low temperature zero pressure parameters of earth materials. On this basis, using the best fitting equations and constraining core temperature to give an extrapolated incompressibilityK 0=1.6×1011Pa, compatible with a plausible iron alloy, the following numerical data are obtained: Core-mantle boundary temperature 3770 K Zero pressure, zero temperature densities: lower mantle 4190 kg m–3 outer core (solidified) 7500 kg m–3 Zero pressure, zero temperature incompressibility of the lower mantle 2.36×1011PaHowever, an inconsistency is apparent betweenP() andK() data, indicating that, even in the PEM model, in which the lower mantle is represented by a single set of parameters, it is not perfectly homogeneous with respect to composition and phase.  相似文献   
33.
General expressions are derived for the numerical evaluation of Duhamel's integral and its derivative. The work comprises an extension (to unequal time steps) and an application (to a piecewise linear forcing function) of the numerical integration approach adopted by Cronin.1 The application is particularly relevant to the digital computation of response spectra from strong motion earthquake records.  相似文献   
34.
Over the past 15 years atmospheric surface-layer experiments over heterogeneous canopies have shown that the vertical transfer of sensible heat and water vapour exhibit a strong dissimilarity. In particular, the sensible-heat-to-water-vapour transport efficiencies generally exceed unity. One of the main consequences is that evaporation (latent heat flux) computed by the flux-variance method is overestimated, as persistently demonstrated by comparisons with evaporation obtained with the eddy-correlation method. Various authors proposed to take into account the temperature–humidity dissimilarity to extend the applicability of the flux-variance method in order to compute evaporation from non-uniform surfaces. They attempted to connect the sensible-heat-to-water-vapour transport efficiency (λ) to the correlation coefficient between temperature and humidity turbulent fluctuations (R Tq ). This approach was found to be successful over ‘wet’ surfaces for which λ can be approximated by R Tq and ‘dry’ surfaces for which λ can be approximated by 1/R Tq . However, no solution has been proposed until now for intermediate hydrological conditions. We investigated this question using eddy-correlation measurements above and inside a pine forest canopy. For both levels, our data present a strong likeness with previously published results over heterogeneous surfaces. In particular, they confirm that λ is R Tq in wet conditions and 1/R Tq in dry conditions. Moreover, we defined the range of the Bowen ratio (Bo) values for which those two approximations are valid (below 0.1 and greater than 1, respectively) and established a relationship between λ, R Tq and Bo for the intermediate range of Bo. We are confident that this new parameterization will enlarge the applicability of the flux-variance method to all kinds of heterogeneous surfaces in various hydrological conditions  相似文献   
35.
The potential of the LAS (large aperture scintillometry) method for measuring sensible heat flux (H) directly integrated over a two-field composite surface is evaluated. We describe a field experiment performed within the Alpilles/ReSeDa project in the south-east of France over a composite surface made up of wheat and bare soil (451 and 216 m long respectively) using two 0.15-m diameter scintillometers mounted at heights of 2.05 and 4.54 m. When compared against reference values obtained by the eddy correlation technique, LAS-measured sensible heat flux reveals a systematic overestimation of about 10%. A simple model describing the integration of the scintillometer signal along the beam for a two-field composite surface is described. A simulation of the experiment confirms that the bias observed isrelated to non-linearities in the integration process in relation with thebell-shape sensitivity curve of the instrument to the structure parameter for the refractive index it measures. The model is used to test the sensitivity of the LAS-derived H values to the composition of the pathlength (ratio of both surfaces) and to the contrast in sensible heat flux and roughness length between the two fields. Sensitivity tests to the aggregation scheme for roughness length (two of them are tested) and to the measurement height are also presented. The composition of the surface in combination with the contrast in sensible heat flux (in direct relation with the contrast in latent heat flux) explains most of the bias, with possible deviations ranging from -50 up to 80 W m-2. A tentative semi-empirical method for correcting the bias is suggested, which only requires a crude estimate of the contrast in component sensible heat fluxes along the pathlength.  相似文献   
36.
An asymmetric-top free radical CH2CN, which as a 2B1 ground state, was detected for the first time by laboratory microwave spectroscopy. The radical was produced in a free-space absorption cell by a DC glow discharge in pure CH3CN gas. About 60 fine-structure components were observed for the N = 11-10 to 14-13 a-type rotational transitions in the frequency region of 220-260 GHz, and many hyperfine resolved components for the N = 4-3 and 5-4 transitions in the 80 and 100 GHz regions, respectively. The molecular constants, including the rotational constants, centrifugal distortion constants, and spin-rotation coupling constants with centrifugal distortion correction terms were determined from the fine-structure resolved transitions, and the hyperfine coupling constants due to the hydrogen and nitrogen nuclei were obtained from the low-N transitions. As a result we assigned U100602 and U80484 from Sgr B2, and U40240 and U20120 from TMC-1, to the N = 5-4, 4-3, 2-1, and 1-0 transitions with K-1 = 0 of the CH2CN radical.  相似文献   
37.
Millimeter wavelength emission from the “parent” molecules HCN, CO, and CH3CN, the latter in both its ground and ν8 = 1 excited vibrational states, was sought from Comet Bradfield (1978c) during March 1978 after comet perihelion, when the heliocentric distance was between 0.45 and 0.55 AU. No lines were detected, and upper limits on the molecular column densities (averaged over the antenna beam) and production rates, Q are estimated. The upper limits on Q for HCN, CH3CN (ν8 = 0), and CH3CN (ν8 = 1) are less than the production rates inferred from the millimeter-wave detection of these species in Comet Kohoutek (1973f). The CO upper limit on Q is comparable to that inferred from a detection of Comet West (1975n) in the rocket uv. It seems likely that the total gas production rate of Comet Bradfield (1978c) was relatively low.  相似文献   
38.
An analysis is made of the coupled lateral-torsional response of a partially symmetric single-storey building model to horizontal translatory earthquake excitation. Interest centres on the evaluation of realistic estimates for two equivalent static actions (a shear and a torque) which account for the worst dynamic consequences of torsional unbalance. The results substantiate the findings of previous investigations which have given rise to the belief that strong modal coupling and severely coupled lateral and torsional responses are possible even in nominally symmetric buildings. The response of the model is assumed to be linearly elastic and viscously damped. In a preliminary analysis the equations of motion are solved using the modal analysis technique and the conditions necessary for full modal coupling are ascertained. Then by employing the design spectrum concept, together with suitably conservative procedures for combining the modal maxima, dimensionless forms of the equivalent static actions are evaluated as functions of two independent parameters. The final results are furnished by modified square root of the sum of the squares (SRSS) combination functions which take account of the spacing between the translational and torsional frequencies. Examples at the end of the paper illustrate the practical significance of the work.  相似文献   
39.
Groundwater flow advects heat, and thus, the deviation of subsurface temperatures from an expected conduction‐dominated regime can be analysed to estimate vertical water fluxes. A number of analytical approaches have been proposed for using heat as a groundwater tracer, and these have typically assumed a homogeneous medium. However, heterogeneous thermal properties are ubiquitous in subsurface environments, both at the scale of geologic strata and at finer scales in streambeds. Herein, we apply the analytical solution of Shan and Bodvarsson ( 2004 ), developed for estimating vertical water fluxes in layered systems, in 2 new environments distinct from previous vadose zone applications. The utility of the solution for studying groundwater‐surface water exchange is demonstrated using temperature data collected from an upwelling streambed with sediment layers, and a simple sensitivity analysis using these data indicates the solution is relatively robust. Also, a deeper temperature profile recorded in a borehole in South Australia is analysed to estimate deeper water fluxes. The analytical solution is able to match observed thermal gradients, including the change in slope at sediment interfaces. Results indicate that not accounting for layering can yield errors in the magnitude and even direction of the inferred Darcy fluxes. A simple automated spreadsheet tool (Flux‐LM) is presented to allow users to input temperature and layer data and solve the inverse problem to estimate groundwater flux rates from shallow (e.g., <1 m) or deep (e.g., up to 100 m) profiles. The solution is not transient, and thus, it should be cautiously applied where diel signals propagate or in deeper zones where multi‐decadal surface signals have disturbed subsurface thermal regimes.  相似文献   
40.
Millimeter-wave emission from HCN, CS, CH3OH, and two unidentified lines (previously observed in Comet Kohoutek (1973 XII)) was sought and not detected from Comet Bradfield (1979l) after perihelion passage. Limits on column densities and production rates are derived. In the case of HCN, the production rate is less than that reported for Comet Kohoutek, even after scaling relative to the observed OH emission from each comet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号