首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25257篇
  免费   380篇
  国内免费   263篇
测绘学   623篇
大气科学   1928篇
地球物理   5403篇
地质学   8838篇
海洋学   2033篇
天文学   5371篇
综合类   38篇
自然地理   1666篇
  2020年   135篇
  2019年   128篇
  2018年   290篇
  2017年   266篇
  2016年   412篇
  2015年   298篇
  2014年   422篇
  2013年   1177篇
  2012年   504篇
  2011年   782篇
  2010年   640篇
  2009年   906篇
  2008年   833篇
  2007年   794篇
  2006年   822篇
  2005年   714篇
  2004年   746篇
  2003年   709篇
  2002年   713篇
  2001年   588篇
  2000年   600篇
  1999年   571篇
  1998年   548篇
  1997年   560篇
  1996年   461篇
  1995年   458篇
  1994年   439篇
  1993年   410篇
  1992年   380篇
  1991年   327篇
  1990年   379篇
  1989年   296篇
  1988年   340篇
  1987年   376篇
  1986年   326篇
  1985年   481篇
  1984年   523篇
  1983年   529篇
  1982年   422篇
  1981年   418篇
  1980年   437篇
  1979年   381篇
  1978年   396篇
  1977年   346篇
  1976年   376篇
  1975年   341篇
  1974年   380篇
  1973年   365篇
  1972年   233篇
  1971年   186篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The theoretical work presented here was stimulated by the interpretation of auroral field-aligned currents in terms of an Alfvén wave generated in the neutral sheet. Allowing for convection such a wave can be stationary relative to the Earth, and with an Alfvén Mach number of about 10?2, hydromagnetics predict that the wave normal should be nearly perpendicular to the magnetic field. All the theory presented here is limited to the cold plasma approximation, which is the next step after hydromagnetics, but should have validity here as the wave is propagating into the cold polar wind plasma.The approach is similar to that of Kellogg (1964) except here we consider only the Alfvén mode, and only for Alfvén Mach numbers of about 10?2. Initially a linear approach was adopted but further computation showed that non-linear effects were responsible for making the current density approximately uniform.The final section presents a plasma sheet boundary crossing selected to illustrate the theory, and is taken from ISEE 1 and 2. The data is such that it permits a first-order estimation of scale sizes to be made in the tail, which in this case was found to be about 1000 km. Subsequent mapping to ionospheric altitudes produced a scale of about a few tens of kilometers.  相似文献   
992.
993.
We derive an occurrence frequency for white-light flares (WLF) of 15.5 ± 4.5 yr?1 during a 2.6 year period following the maximum of solar cycle 21. This compares with a frequency 5–6 yr?1 derived by McIntosh and Donnelly (1972) during solar cycle 20. We find that the higher frequency of the more recently observed WLFs is due to the availability of patrol data at shorter wavelengths (λ ? 4000 Å), where the contrast of the flare emission is increased; the improved contrast has allowed less energetic (and hence more frequently occurring) events to be classified as WLFs. We find that sufficient conditions for the occurrence of a WLF are: active region magnetic class = delta; sunspot penumbra class = K, with spot group area ≥ 500 millionths of the solar hemisphere; 1–8 Å X-ray burst class ≥ X2.  相似文献   
994.
We use a variety of ground-based and satellite measurements to identify the source of the ground level event (GLE) beginning near 06∶30 UT on 21 August, 1979 as the 2B flare with maximum at ~06∶15 UT in McMath region 16218. This flare differed from previous GLE-associated flares in that it lacked a prominent impulsive phase, having a peak ~9 GHz burst flux density of only 27 sfu and a ?20 keV peak hard X-ray flux of ?3 × 10-6 ergs cm-2s-1. Also, McMath 16218 was magnetically less complex than the active regions in which previous cosmic-ray flares have occurred, containing essentially only a single sunspot with a rudimentary penumbra. The flare was associated with a high speed (?700 km s-1) mass ejection observed by the NRL white light coronagraph aboard P78-1 and a shock accelerated (SA) event observed by the low frequency radio astronomy experiment on ISEE-3.  相似文献   
995.
The capability to measure nearly simultaneously the entire spectrum of atmospheric emission from the extreme ultraviolet to the near infrared, with relatively high spectral resolution and high sensitivity, while also obtaining global and altitude coverage, would provide a database from which significant advances could be made in our current understanding of the atmosphere and its processes. The large payload capacity of the shuttle orbiter offers the first opportunity to put such instrumentation into space. The Imaging Spectrometric Observatory (ISO) comprises an array of five spectrometers designed to make full use of the shuttle as an observing platform for remote sensing of the atmosphere. ISO covers the wavelength range 300–12000 Å at 2–7 Å resolution. Use of area array detectors (intensified-CCD's) permits simultaneous measurements of ~1000 Å at a time. The instrument is capable of scanning the entire wavelength range in less than 20 s, or dwelling on weaker features for longer periods of time. The detectors are two dimensional and permit spectral imaging in one direction and spatial imaging in the other. The spatial imaging and spatial scanning features permit measurement of altitude profiles, or mapping of strongly spatially varying features such as aurorae. The instrument is designed to allow versatility. The various functions are programmable and software controlled. The key subsystems are modular for convenient replacement or upgrading. It is anticipated that the instrument will have applications not only in the area of atmospheric science, but also in studies of the ionosphere and magnetosphere, and in support of active experiments to be performed in space.  相似文献   
996.
Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar FUV radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.  相似文献   
997.
998.
The characteristics of the line profile variations observed in optical transitions of O-type stars are reviewed. For a few well-observed stars, there is compelling evidence that the variations are due to photospheric velocity fields from one or more modes of nonradial pulsation. However, the origin of the line profile variations observed in most O stars is not yet established. To date, there is little empirical evidence to suggest that the variability in optical absorption lines of O stars is causally linked to the stellar wind variability commonly observed in their UV resonance lines.  相似文献   
999.
We discuss preliminary results of an 11.7 m imaging survey of ultracompact H II regions from the Wood and Churchwell radio survey. We find that that the morphologies of ionized gas and warm dust are often significantly different, indicating that an H II region classification scheme should be based on more than radio data.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号