首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28914篇
  免费   612篇
  国内免费   296篇
测绘学   776篇
大气科学   2422篇
地球物理   6302篇
地质学   10391篇
海洋学   2194篇
天文学   5883篇
综合类   63篇
自然地理   1791篇
  2021年   185篇
  2020年   195篇
  2018年   420篇
  2017年   421篇
  2016年   620篇
  2015年   416篇
  2014年   602篇
  2013年   1402篇
  2012年   599篇
  2011年   940篇
  2010年   811篇
  2009年   1110篇
  2008年   965篇
  2007年   897篇
  2006年   923篇
  2005年   787篇
  2004年   792篇
  2003年   763篇
  2002年   788篇
  2001年   649篇
  2000年   657篇
  1999年   630篇
  1998年   605篇
  1997年   614篇
  1996年   497篇
  1995年   518篇
  1994年   502篇
  1993年   443篇
  1992年   410篇
  1991年   362篇
  1990年   419篇
  1989年   327篇
  1988年   363篇
  1987年   404篇
  1986年   344篇
  1985年   520篇
  1984年   567篇
  1983年   584篇
  1982年   458篇
  1981年   455篇
  1980年   470篇
  1979年   407篇
  1978年   444篇
  1977年   379篇
  1976年   399篇
  1975年   377篇
  1974年   429篇
  1973年   406篇
  1972年   253篇
  1971年   203篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
A Simple Parameterisation for Flux Footprint Predictions   总被引:9,自引:6,他引:9  
Flux footprint functions estimate the location and relative importance of passive scalar sources influencing flux measurements at a given receptor height. These footprint estimates strongly vary in size, depending on receptor height, atmospheric stability, and surface roughness. Reliable footprint calculations from, e.g., Lagrangian stochastic models or large-eddy simulations are computationally expensive and cannot readily be computed for long-term observational programs. To facilitate more accessible footprint estimates, a scaling procedure is introduced for flux footprint functions over a range of stratifications from convective to stable, and receptor heights ranging from near the surface to the middle of the boundary layer. It is shown that, when applying this scaling procedure, footprint estimates collapse to an ensemble of similar curves. A simple parameterisation for the scaled footprint estimates is presented. This parameterisation accounts for the influence of the roughness length on the footprint and allows for a quick but precise algebraic footprint estimation.  相似文献   
942.
The Denitrification-Decompostion (DNDC) model was used to estimate the impact of change in management practices on N2O emissions in seven major soil regions in Canada, for the period 1970 to 2029. Conversion of cultivated land to permanent grassland would result in the greatest reduction in N2O emissions, particularly in eastern Canada wherethe model estimated about 60% less N2O emissions for thisconversion. About 33% less N2O emissions were predicted for a changefrom conventional tillage to no-tillage in western Canada, however, a slight increase in N2O emissions was predicted for eastern Canada. GreaterN2O emissions in eastern Canada associated with the adoption of no-tillage were attributed to higher soil moisture causing denitrification, whereas the lower emissions in western Canada were attributed to less decomposition of soil organic matter in no-till versus conventional tilled soil. Elimination of summer fallow in a crop rotation resulted in a 9% decrease in N2O emissions, with substantial emissions occurringduring the wetter fallow years when N had accumulated. Increasing N-fertilizer application rates by 50% increased average emissions by 32%,while a 50% decrease of N-fertilizer application decreased emissions by16%. In general, a small increase in N2O emissions was predicted when N-fertilizer was applied in the fall rather than in the spring. Previous research on CO2 emissions with the CENTURY model (Smith et al.,2001) allowed the quantification of the combined change in N2O andCO2 emissions in CO2 equivalents for a wide range of managementpractices in the seven major soil regions in Canada. The management practices that have the greatest potential to reduce the combined N2O andCO2 emissions are conversion from conventional tillage to permanent grassland, reduced tillage, and reduction of summer fallow. The estimated net greenhouse gas (GHG) emission reduction when changing from cultivated land to permanent grassland ranged from 0.97 (Brown Chernozem) to 4.24 MgCO2 equiv. ha–1 y–1 (BlackChernozem) for the seven soil regions examined. When changing from conventional tillage to no-tillage the net GHG emission reduction ranged from 0.33 (Brown Chernozem) to 0.80 Mg CO2 equiv. ha–1 y–1 (Dark GrayLuvisol). Elimination of fallow in the crop rotation lead to an estimated net GHG emission reduction of 0.43 (Brown Chernozem) to 0.80 Mg CO2 equiv.ha–1 y–1 (Dark Brown Chernozem). The addition of 50% more or 50% less N-fertilizer both resulted in slight increases in combined CO2 and N2O emissions. There was a tradeoff in GHG flux with greaterN2O emissions and a comparable increase in carbon storage when 50% more N-fertilizer was added. The results from this work indicate that conversion of cultivated land to grassland, the conversion from conventional tillage to no-tillage, and the reduction of summerallow in crop rotations could substantially increase C sequestration and decrease net GHG emissions. Based on these results a simple scaling-up scenario to derive the possible impacts on Canada's Kyoto commitment has been calculated.  相似文献   
943.
The Parallel Climate Model (PCM) has been used in the Accelerated ClimatePrediction Initiative (ACPI) Program to simulate the global climateresponse to projected CO2, sulfate, and other greenhouse gasforcingunder a business-as-usual emissions scenario during the 21st century. In these runs, the oceans were initialized to 1995 conditions by a group from the Scripps Institution of Oceanography and other institutions. An ensemble of three model runs was then carried out to the year 2099 using the projected forcing. Atmospheric data fromthese runs were saved at 6-hourly intervals (hourly for certain criticalfields) to support the ACPI objective of accurately modeling hydrologicalcycles over the western U.S. It is shown that the initialization to1995 conditions partly removes the un-forced oceanic temperature and salinity drifts that occurred in the standard 20th century integration. The ACPI runs show a global surface temperature increase of 3–8 °C over northern high-latitudes by the end of the 21st century, and 1–2 °C over the oceans. This is generally within ±0.1°Cof model runs without the 1995 ocean initialization. The exception is in theAntarctic circumpolar ocean where surface air temperature is cooler in theACPI run; however the ensemble scatter is large in this region. Althoughthe difference in climate at the end of the 21st century is minimalbetween the ACPI runs and traditionally spun up runs, it might be largerfor CGCMs with higher climate sensitivity or larger ocean drifts. Ourresults suggest that the effect of small errors in the oceans (such asthose associated with climate drifts) on CGCM-simulated climate changesfor the next 50–100 years may be negligible.  相似文献   
944.
The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a `business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995–2015) scenario and from the three BAU climate(2040–2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1–3: 2010–2039,2040–2069, 2070–2098) in which changes in annual average temperature were +0.5,+1.3 and +2.1 °C, respectively, while critical winter season precipitation changes were –3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040–2060 period was +1.2 °C and the average winter precipitation change was –3 percent, relative to the RCM controlclimate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative reservoir operating policies designed to mitigate reservoir system performance losses. In general, the combination of earlier reservoir refill with greater storage allocations for instream flow targets mitigated some of the negative impacts to flow, but only with significant losses in firm hydropower production (ranging from –9 percent in Period1 to –35 percent for RCM). Simulated hydropower revenue changes were lessthan 5 percent for all scenarios, however, primarily due to small changes inannual runoff.  相似文献   
945.
We consider the response of a deep unconfined horizontal aquifer to steady, annual, and monthly recharge. A groundwater divide and a zero head reservoir constrain the aquifer, so that sinusoidal monthly and aperiodic annual recharge fluctuations create transient specific discharge near the reservoir and an unsteady water table elevation inland. One existing and two new long-term data sets from the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate and confirm hydraulic properties in a set of analytical models. [Geohydrology and simulated groundwater flow, 1992] data and a new power law for tritiugenic helium to tritium ratios calibrate the steady recharge that drives the classical parabolic model of steady hydraulics [Applied Hydrogeology, 2001]. Observed water table and gradient fluctuations calibrate the transient recharge models. In the latter regard, monitoring wells within 1 km of Buttermilk Bay exhibit appreciable specific discharge and reduced water table fluctuations. We apply [Trans Am Geophys Union 32(1951)238] periodic model to the monthly hydraulics and a recharge convolution integral [J Hydrol 126(1991)315] to annual flow. An infiltration fraction of 0.79 and a consumptive use coefficient of 1.08×10−8 m/s °C relate recharge to precipitation and daylight weighted temperature across all three time scales. Errors associated with this recharge relation decrease with increasing time scale.  相似文献   
946.
947.
948.
949.
Three sites in the UK are taken, representative of low, medium and high hazard levels (by UK standards). For each site, the hazard value at 10−4 annual probability is computed using a generic seismic source model, and a variety of ground motion parameters: peak ground acceleration (PGA), spectral acceleration at 10 Hz and 1 Hz, and intensity. Disaggregation is used to determine the nature of the earthquakes most likely to generate these hazard values. It is found (as might be expected) that the populations are quite different according to which ground motion parameter is used. When PGA is used, the result is a rather flat magnitude distribution with a tendency to low magnitude events (\le 4.5 ML) which are probably not really hazardous. Hazard-consistent scenario earthquakes computed using intensity are found to be in the range 5.8–5.9 ML, which is more in accord with the type of earthquake that one expects to be a worst-case event in the UK. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
950.
Anisotropic material properties are usually neglected during inversions for source parameters of earthquakes. In general anisotropic media, however, moment tensors for pure-shear sources can exhibit significant non-double-couple components. Such effects may be erroneously interpreted as an indication for volumetric changes at the source. Here we investigate effects of anisotropy on seismic moment tensors and radiation patterns for pure-shear and tensile-type sources. Anisotropy can significantly influence the interpretation of the source mechanisms. For example, the orientation of the slip within the fault plane may affect the total seismic moment. Also, moment tensors due to pure-shear and tensile faulting can have similar characteristics depending on the orientation of the elastic tensor. Furthermore, the tensile nature of an earthquake can be obscured by near-source anisotropic properties. As an application, we consider effects of inhomogeneous anisotropic properties on the seismic moment tensor and the radiation patterns of a selected type of micro-earthquakes observed in W-Bohemia. The combined effects of near-source and along-path anisotropy cause characteristic amplitude distortions of the P, S1 and S2 waves. However, the modeling suggests that neither homogeneous nor inhomogeneous anisotropic properties alone can explain the observed large non-double-couple components.The results also indicate that a correct analysis of the source mechanism, in principle, is achievable by application of anisotropic moment tensor inversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号