首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29327篇
  免费   374篇
  国内免费   250篇
测绘学   777篇
大气科学   2437篇
地球物理   6318篇
地质学   10434篇
海洋学   2198篇
天文学   5920篇
综合类   70篇
自然地理   1797篇
  2021年   195篇
  2020年   218篇
  2018年   420篇
  2017年   422篇
  2016年   625篇
  2015年   417篇
  2014年   602篇
  2013年   1402篇
  2012年   599篇
  2011年   940篇
  2010年   811篇
  2009年   1110篇
  2008年   965篇
  2007年   897篇
  2006年   923篇
  2005年   787篇
  2004年   792篇
  2003年   763篇
  2002年   790篇
  2001年   649篇
  2000年   657篇
  1999年   630篇
  1998年   606篇
  1997年   615篇
  1996年   497篇
  1995年   518篇
  1994年   502篇
  1993年   445篇
  1992年   412篇
  1991年   363篇
  1990年   419篇
  1989年   328篇
  1988年   364篇
  1987年   405篇
  1986年   344篇
  1985年   520篇
  1984年   568篇
  1983年   584篇
  1982年   459篇
  1981年   455篇
  1980年   471篇
  1979年   407篇
  1978年   444篇
  1977年   379篇
  1976年   399篇
  1975年   377篇
  1974年   429篇
  1973年   406篇
  1972年   253篇
  1971年   203篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
101.
Knudsen cell-quadrupole mass spectrometry was used to study the high-temperature vaporization of Hawaiian basalts, plagioclase, tektites, and samples from the Allende meteorite. Procedures are described by which mass loss rates and vapor pressures of Na and K were measured quantitatively.Gas-rich glassy basalts were observed to vesiculate under vacuum over the 900–1000°C region and simultaneously evaporate alkalis in nonequilibrium fashion at rates (units of μg/g/hr) of approximately 200–300 Na and 75–250 K. Degassed residues of the same basalts demonstrated equilibrium evaporation rates (over the same temperature range) of 60–120 Na and 30–60 K. The gas-deficient plagioclase and tektite sample showed only equilibrium vaporization with rates of 60 Na, 10 K (plagioclase) and 10 Na, 5K (tektites) at 900–1000°C. The Allende meteorite vaporized at rates of 2400 Na and 200 K at 900–1000°C, possibly by the reaction of Na2O and K2O with C or S2, or by the thermal decomposition of nepheline or sodalite.The nonequilibrium vaporization of alkalis from the gas-rich basalts is attributed to vigorous agitation of the melt during its vesiculation by a gas phase composed principally of SO2, CO2, H2O, CO, and H2S. The major gases released from the Allende meteorite at 900–1000°C are, in order of decreasing abundance, CO, S2, CO2, H2O, SO2, and H2S.It is proposed that nonequilibrium vaporization of alkalis during the vesiculation of lunar lavas was responsible for the production of alkali-rich vapors which subsequently deposited plagioclase crystals in the vugs of lunar rocks. The vesiculative, nonequilibrium vaporization of Na and K during a lunar volcanic eruption should be expected to occur at a high rate upon initial extrusion of the lava into vacuum but then decrease by a factor of approximately three when degassing is nearing completion. Vaporization losses remain inadequate to explain the uniformly low alkali concentrations in lunar basalts.  相似文献   
102.
103.
Poecilia reticulata PETERS (guppy) and the green alga Monoraphidium griffithii were used for testing of different fluorotensides. After the representation of the methods of investigation and the definition of criteria of toxicity the obtained results of investigation are discussed. In general, the toxicity of the four investigated fluorotensides to algae was lower than to fish. The anionic fluorotenside CF3—(CF2)n—CFH—COONa was an exception. In tables and diagrams the results are summarized. Finally, for the condition of the receiving-water biocenosis class “2” the respective still permissible matter concentrations are proposed. They vary between 0.05 and 0.2 mg/1.  相似文献   
104.
Summary. This paper is concerned with an examination of the possibility that there might exist a small scale of convective circulation beneath the oceanic lithosphere. Recent suggestions that this might be the case have been made in an effort to understand why the bathymetry of the sea-floor deviates from the prediction of boundary layer theory for ages in excess of about 100 Ma. The energy source which sustains the secondary motion is supposed to be found in the steep temperature gradient near the planetary surface which is itself presumably maintained by the large-scale convective circulation associated with plate creation and destruction. Here we investigate the extent to which the temperature dependence of viscosity may act so as to stabilize the upper boundary layer against disruption by such secondary instability. If the viscosity profile is monotonie and the asymptotic upper mantle viscosity is about 1022poise, as suggested by post-glacial rebound data, then the existence of the second scale is extremely unlikely. On the other hand, if a sufficiently pronounced low viscosity zone does exist under old sea-floor then the development of such a second scale cannot be ruled out completely. Some recently obtained geophysical evidence is reviewed which suggests that this is unlikely to be the case.  相似文献   
105.
106.
The Ragland, New Mexico chondrite was found in 1978, and consists of a single stone of 12.16 kg that broke into three pieces. The stone is moderately weathered and has a pronounced chondritic texture. Bulk composition favors an LL classification, and modal analysis and oxygen isotopic composition are consistent with this. The thermoluminescence sensitivity of 0.056 ± 0.020 normalized to Dhajala, compositional variability of olivine (mean Fa 18.3, σ = 10.1) and low-Ca pyroxene (mean Fs 14.6, σ = 6.7), and Ca concentrations in olivine indicate metamorphic subtype 3.4 ± 0.1. The isotopically heavy oxygen composition, which is characteristic of subtypes 3.0–3.1, may be a primary characteristic and not a result of weathering. Low concentrations of radiogenic 40Ar and planetary 36Ar suggest noble gas loss.  相似文献   
107.
108.
ABSTRACT

The study presented herein forms part of a wider research project on dispersion prediction in open channel flows which include laboratory, field and numerical investigations. In this paper, a numerical model which uses finite elements in space and finite differences in time for the solution of the convective-dispersion equation is developed and verified. In the model, the dispersion coefficient is considered as a function of time (or distance) during the initial period. It is represented by a modified Fickian type model which has been calibrated by the authors using laboratory data. The numerical model has been used to predict concentration profiles of tracer studies carried out in the laboratory as well as in the field.  相似文献   
109.
110.
Iterative methods for the solution of non‐linear finite element equations are generally based on variants of the Newton–Raphson method. When they are stable, full Newton–Raphson schemes usually converge rapidly but may be expensive for some types of problems (for example, when the tangent stiffness matrix is unsymmetric). Initial stiffness schemes, on the other hand, are extremely robust but may require large numbers of iterations for cases where the plastic zone is extensive. In most geomechanics applications it is generally preferable to use a tangent stiffness scheme, but there are situations in which initial stiffness schemes are very useful. These situations include problems where a nonassociated flow rule is used or where the zone of plastic yielding is highly localized. This paper surveys the performance of several single‐parameter techniques for accelerating the convergence of the initial stiffness scheme. Some simple but effective modifications to these procedures are also proposed. In particular, a modified version of Thomas' acceleration scheme is developed which has a good rate of convergence. Previously published results on the performance of various acceleration algorithms for initial stiffness iteration are rare and have been restricted to relatively simple yield criteria and simple problems. In this study, detailed numerical results are presented for the expansion of a thick cylinder, the collapse of a rigid strip footing, and the failure of a vertical cut. These analyses use the Mohr–Coulomb and Tresca yield criteria which are popular in soil mechanics. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号