首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52725篇
  免费   753篇
  国内免费   578篇
测绘学   1202篇
大气科学   3603篇
地球物理   10385篇
地质学   19568篇
海洋学   4852篇
天文学   11547篇
综合类   105篇
自然地理   2794篇
  2021年   563篇
  2020年   636篇
  2019年   670篇
  2018年   1356篇
  2017年   1280篇
  2016年   1512篇
  2015年   814篇
  2014年   1422篇
  2013年   2761篇
  2012年   1603篇
  2011年   2147篇
  2010年   1876篇
  2009年   2360篇
  2008年   2080篇
  2007年   2109篇
  2006年   2049篇
  2005年   1403篇
  2004年   1374篇
  2003年   1310篇
  2002年   1344篇
  2001年   1151篇
  2000年   1096篇
  1999年   969篇
  1998年   958篇
  1997年   973篇
  1996年   828篇
  1995年   782篇
  1994年   785篇
  1993年   680篇
  1992年   654篇
  1991年   595篇
  1990年   662篇
  1989年   500篇
  1988年   547篇
  1987年   623篇
  1986年   520篇
  1985年   761篇
  1984年   777篇
  1983年   767篇
  1982年   679篇
  1981年   606篇
  1980年   661篇
  1979年   568篇
  1978年   589篇
  1977年   500篇
  1976年   529篇
  1975年   500篇
  1974年   527篇
  1973年   526篇
  1972年   351篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
101.
R. W. Komm 《Solar physics》1995,157(1-2):45-50
I analyze a quiet-Sun magnetogram with an orthogonal wavelet transform, which allows me to define an entropy measure. The entropy measure of the magnetogram as a function of spatial scale obeys a scaling law, which leads to a fractal dimension ofD f = 1.7. Furthermore, the entropy scaling law is directly related to the intermittency of magnetic features, which increases for decreasing spatial scales, as expected for a turbulent signal. In this context, the scaling law parameter can be interpreted as a fractional reduction in volume from one step of the turbulent cascade to the next.Operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.  相似文献   
102.
Exnovae and nova shells are generally faint and difficult to observe. Only a few have been studied, and even less of them in sufficient detail. We give a progress report on our survey of exnovae and nova shells, especially on the results of a spectral survey of novae in the southern Milky Way. The three-dimensional structure in the light of H derived for the nebula of GK Per is displayed.Based on observations obtained at the European Southern Observatory, La Silla, Chile, and at the Centro Astronomico Hispano-Aleman Calar Alto, Spain, operated by the Max-Planck-Institut für Astronomie, Heidelberg.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   
103.
The Oppenheimer-Penney theory, as developed by Percival and Seaton (1958), is applied to calculate the polarization of resonance lines from Li-like ions. Two laws for the pitch-angle distribution of electrons around the magnetic field are accounted. The degrees of polarization are averaged over the energy of non-thermal electrons generated during the initial phase of solar flares. It is found that for the full space pitch-angle distribution, as adopted by Chandra and Joshi (1984), the degrees of polarization are nearly independent of the atomic number of ion. Whereas for the forward-come distribution used by Haug (1981), they depend on the choice of the free parameterE 0. The polarization of the resonance lines from Li-like ions is two times larger than that of the L radiations from H-like ions. Hence, under favourable conditions, it may be detected during solar flares.  相似文献   
104.
Decelerations of the shells around the novae V603 Aq1, V476 Cyg, DQ Her and GK Per were determined from photographs and recent CCD observations. The deceleration is larger for higher expansion velocities, the mean half-lifetime, after which the expansion velocity has dropped to half its initial value, is 75 years.Based on observations obtained at the European Southern Observatory, La Silla, Chile, and at the Centro Astronomico Hispano-Aleman Calar Alto, operated by the Max-Planck-Institut für Astronomie, HeidelbergPaper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   
105.
Observations made by the differential method in the H line have revealed longperiod (on a timescale of 40 to 80 min) line-of-sight velocity oscillations which increase in amplitude with distance from the centre to the solar limb and, as we believe, give rise to prominence oscillations. As a test, we present some results of simultaneous observations at the photospheric level where such periods are absent.Oscillatory processes in the solar chromosphere have been studied by many authors. Previous efforts in this vein led to the detection of shortperiod oscillations in both the mass velocities and radiation intensity (Deubner, 1981). The oscillation periods obtained do not, normally, exceed 10–20 min (Dubov, 1978). More recently, Merkulenko and Mishina (1985), using filter observations in the H line, found intensity fluctuations with periods not exceeding 78 min. However, the observing technique they used does not exclude the possibility that those fluctuations were due to the influence of the Earth's atmosphere. It is also interesting to note that in spectra obtained by Merkulenko and Mishina (1985), the amplitude of the 3 min oscillations is anomalously small and the 5 min period is altogether absent, while the majority of other papers treating the brightness oscillations in the chromosphere, do not report such periods in the first place. So far, we are not aware of any other evidence concerning the longperiod velocity oscillations in the chromosphere on a timescale of 40–80 min.Longperiod oscillations in prominences (filaments) in the range from 40 to 80 min, as found by Bashkirtsev et al. (1983) and Bashkirtsev and Mashnich (1984, 1985), indicate that such oscillations can exist in both the chromosphere and the corona (Hollweg et al., 1982).In this note we report on experimental evidence for the existence of longperiod oscillations of mass velocity in the solar chromosphere.  相似文献   
106.
The recent determination that the angular velocity of the Sun declines downward through the convective zone raises serious questions about the nature of the solar dynamo. The principal qualitative features of the Sun are the azimuthal fields that migrate toward the equator in association with an oscillating poloidal field which reverses at about the time of maximum appearance of bipolar magnetic regions. If decreases downward, or is negligible, the horizontal gradient in produces a dynamo with some of these essential characteristics. There is reason to think that the dynamo is confined to the lower half of the convective zone where has the opposite sign from the usual ( > 0 in the northern hemisphere) producing equatorward migration but reversing the sign of the associated poloidal field. Meridional circulation may play an essential role in shaping the dynamo. At the present time it is essential to measure accurately and determine the nature of the meridional circulation.Solar Cycle Workshop Paper.  相似文献   
107.
In anisotropic plasmas, the radiative power emitted and the power observed per unit solid angle should be calculated along the direction of the group velocityv g . The two power functions referred differ by a product of two factors: one is the group Doppler factor and the other is the squeezing effect of the radiative energy due to the dependence ofv g on direction. In this paper, the group Doppler factor is derived using two different methods, and the relevant physical concepts are analyzed in details. A number of numerical examples pertaining to astrophysical situations are presented, to illustrate the significance of the group Doppler effect with respect to the wave Doppler effect which is valid in isotropic media.  相似文献   
108.
109.
A critical evaluation of literature values for the solubility products, K sp NBS = [Fe2+][HS] Fe2+ HS (H NBS + )–1, of various iron sulphide phases results in consensus values for the pKs of 2.95 ± 0.1 for amorphous ferrous sulphide, 3.6 ± 0.2 for mackinawite, 4.4 ± 0.1 for greigite, 5.1 ± 0.1 for pyrrhotite, 5.25 ± 0.2 for troilite and 16.4 ± 1.2 for pyrite.Where the analogous ion activity products have been measured in anoxic freshwaters in which there is evidence for the presence of solid phase FeS, the values lie within the range of 2.6–3.22, indicating that amorphous iron sulphide is the controlling phase. The single value for a groundwater of 2.65 (2.98 considering carbonate complexation) agrees. In seawater four values range between 3.85 to 4.2, indicating that mackinawite or greigite may be the controlling phase. The single low value of 2.94 is in a situation where particularly high fluxes of Fe (II) and S (–II) may result in the preferential precipitation of amorphous iron sulphide. Formation of framboidal pyrite in these sulphidic environments may occur in micro-niches and does not appear to influence bulk concentrations. Calculations show that the formation of Fe2S2 species probably accounts for very little of the iron or sulphide in most natural waters. Previously reported stability constants for the formation of Fe (HS)2 and (Fe (HS)3) are shown to be suspect, and these species are also thought to be negligible in natural waters. In completely anoxic pore waters polysulphides also have a negligible effect on speciation, but in tidal sediments they may reach appreciable concentrations and lead to the direct formation of pyrite. Concentrations of iron and sulphide in pore waters can be controlled by the more soluble iron sulphide phase. The change in the IAP with depth within the sediment may reflect ageing of the solid phase or a greater flux of Fe (II) and S (–II) nearer the sediment surface. This possible kinetic influence on the value of IAPs has implications for their use in geochemical studies involving phase formation.  相似文献   
110.
Models of aggradation versus progradation in the Himalayan Foreland   总被引:1,自引:0,他引:1  
A frequent goal of decompaction analysis is to reconstruct histories of basin subsidence and tectonic loading. In marine environments, eustatic and paleobathymetric uncertainties limit the resolution of these reconstructions. Whereas in the terrestrial basins, these ambiguities are absent, it is still necessary to account for depositional slopes between localities in order to analyze three-dimensional patterns of subsidence. We define two end-members for depositional surfaces: aggradation and progradation. The relative importance of either end-member is a function of the interplay between the rate of net sediment accumulation and the rate of basin subsidence. The models predict the patterns of major drainages (transverse versus longitudinal) and the way in which provenance should be reflected within different portions of a basin. Consequently, paleocurrent and provenance data from the ancient stratigraphic record can be used to distinguish between these endmembers. The subhorizontal depositional surfaces that dominate during times of aggradation provide a well defined reference frame for regional analysis of decompacted stratigraphies and related subsidence. Depositional slopes during progradation can not be as precisely specified, and consequently yield greater uncertainties in reconstructions of subsidence. These models are applied to the Mio-Pliocene foreland basin of the northwestern Himalaya, where sequences of isochronous strata have been analyzed throughout the basin. These time-controlled data delineate a distinctive evolution from largely aggradational to largely progradational depositional geometries as deformation progressively encroaches on the foreland. Such a reconstruction of past depositional surfaces provides a well constrained reference frame for subsequent integration of subsidence histories from throughout the foreland.
Zusammenfassung Ein häufiges Ziel der Dekompaktionsanalyse ist es die Beckenabsenkung und die tektonische Belastung zu rekonstruieren. In marinen Ablagerungsräumen limitieren eustatische und paläobathymetrische Unsicherheiten die Auflösung der Rekonstruktion. Bei terrestrischen Becken fehlen diese Zweideutigkeiten; es ist aber trotzdem notwendig, Rechenschaft über den Ablagerungshang zwischen verschiedenen Lokalitäten abzulegen, um dreidimensionale Subsidenzmuster zu analysieren. Wir definieren zwei Endglieder von Ablagerangsflächen: Aggradation und Progradation. Die relative Wichtigkeit des jeweiligen Endglieds ist eine Funktion des Zusammenspiels zwischen der Nettorate der Sedimentakkumulation und der Beckensubsidenz. Die Modelle sagen die Hauptentwässerungsmuster (quer- oder längsverlaufend) vorher, sowie den Weg in dem die Sedimentherkunft innerhalb verschiedener Bereiche des Beckens berücksichtigt werden sollte. Folglich können Paläoströmungs- und Herkunftsdaten alter stratigraphischer Überlieferungen benutzt werden, um zwischen den Endgliedern zu unterscheiden. Die subhorizontale Ablagerungsfläche welche zur Zeit der Aggradation dominant ist, liefert einen gut definierten Referenzrahmen für die regionale Analyse von dekomprimierten Formationen und der damit verknüpften Subsidenz. Ablagerangshänge während Progradation können nicht präzise spezifiziert werden und beinhalten daher größere Unsicherheiten bei der Rekonstruktion der Subsidenz. Diese Modelle wurden übertragen auf das miozäne bis pliozäne Vorgebirgsbecken des nordwestlichen Himalayas, wo Sequenzen von isochronen Schichten durch das gesamte Becken analysiert werden konnten. Diese zeitkontrollierten Daten schildern eine ganz bestimmte Entwicklung, die von einer hauptsächlich aggradierenden zu einer progradierenden Ablagerangsgeometrie verlief, während der die Deformation schrittweise in Richtung Vorland übergriff. Diese Rekonstruktion von ehemaligen Ablagerangsflächen liefert einen guten Referenzrahmen für die folgende Integration der Subsidenzgeschichte des gesamten Vorlands.

Résumé L'analyse de décompaction a souvent pour but de reconstituer l'histoire de la subsidence d'un bassin et de la charge tectonique. Dans les milieux marins, de telles reconstitutions sont limitées par des incertitudes de caractère eustatique et paléobathymétrique. Par contre, ces ambiguïtés ne se présentent pas dans le cas des bassins continentaux, où il convient néanmoins de tenir compte de la pente de la surface de dépôt entre les divers points considérés pour établir un schéma tridimensionnel de la subsidence. Nous définissons deux situations extrêmes pour les surfaces de dépôt: l'aggradation et la progradation. L'importance relative de ces deux extrêmes est fonction de l'interaction entre le taux d'accumulation net des sédiments et le taux de subsidence du bassin. Les modèles prévoient la répartition des drainages principaux (transverse ou longitudinal) et la manière dont l'origine des sédiments peut se répercuter dans les diverses parties d'un bassin. Il en résulte que des informations fournies par les relevés stratigraphiques à propos des paléocourants et de la source des sédiments peuvent être utilisées pour faire la distinction entre les deux cas extrêmes. Les surfaces de dépôt subhorizontales, qui prédominent pendant les périodes d'aggradation, fournissent un bon cadre de référence pour les analyses régionales de formations décompactées et de la subsidence qui leur est associée. Les surfaces de dépôt inclinées qui se présentent au cours des progradations ne peuvent pas être définies de manière aussi précise et engendrent par conséquent plus d'incertitude dans la reconstitution de la subsidence. Les auteurs appliquent ces modèles au bassin mio-pliocène d'avant-pays de l'Himalaya nord-occidental, dans lequel des séquences de couches isochrones ont été suivies à travers tout le bassin. Ces données, chronologiquement définies, fournissent l'image d'une évolution nette, depuis des géométries typiques d'aggradation jusqu' à des géométries typiques de progradation, au fur et à mesure de l'emprise progressive de la déformation sur l'avant-pays. Une telle reconstitution des surfaces de dépôt anciennes fournit un bon cadre de référence en vue de l'intégration ultérieure de l'histoire de la subsidence dans l'ensemble de l'avant-pays.

. . ; , , . « » « ». . , , . , , , . , , . , . , . , , . .
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号