Summary. During 1977 March and April, three Sacks-Evertson borehole dilatometers were installed at the ends of boreholes drilled into the sidewall of an experimental tunnel at a depth of 3.1 km in the ERPM gold mine near Johannesburg. In the following year coseismic strain changes ranging from 5 ± 10−10 to values exceeding 5 ± 10−6 were recorded for hundreds of mine tremors in the magnitude range -1 to 3.7 and at hypocentral distances of 50 m to about 2 km. Hypocentral coordinates and magnitudes were determined from seismograms recorded from an underground array of geophones. Amplitudes and polarities of the coseismic strain steps are generally in excellent agreement with theoretical expectations based on point-source dislocation theory; specifically, the strain steps are proportional to the seismic moment divided by the cube of hypocentral distance. At a strain level of 5 ± 10−9 or greater the tremors do not appear to be preceded by any short-term indications of instability even for tremors producing coseismic steps greater than 5 ± 10−6 and for which the strainmeters were within a source radius of the hypocentre. Continuous strain changes observed at the times when the mine excavation, at a distance of about 100 m, is extended are in good agreement with calculated changes based on the theory of elasticity. A similar calculation is consistent with post-seismic strain changes observed to follow some of the closer tremors. These post-seismic strains show a logarithmic dependence on time following the tremor and appear to be due to the interaction of a tremor with the adjacent mine excavation rather than to deformation within the actual seismic source region. 相似文献
Although Paleoindian sites in Indiana, USA, are commonly located on late Wisconsin (Last Glacial Maximum) outwash terraces, drainage basin development since deglaciation often obscures the visibility of such sites on flood plains by either burying them under alluvium or destroying them through erosion. Significant clusters of Paleoindian and Early Archaic sites, however, have been identified proximal to the modern White River channel in central Indiana on what is mapped as “floodplain.” These site cluster locations are patterned. They typically occur within bedrock‐controlled river reaches but are rare along unconfined meandering reaches. Subsurface reconnaissance and chronology indicate that despite the fact that they often flood, portions of the so‐called flood plains within bedrock‐confined reaches are actually terraces constructed of late Wisconsin outwash with minimal overbank sedimentation. Terrace preservation in these settings is a result of bedrock structure that protects older sediments from lateral erosion and differentially preserves archaeological sites near the modern channel in bedrock‐controlled reaches. Comparisons of archaeological sites within bedrock‐controlled segments of the White River to those in unconfined meandering segments suggests that significant numbers of Paleoindian and Early Archaic sites may be missing from river settings across the midcontinent. These findings demonstrate that bedrock channel controls are important to recognize when assessing prehistoric settlement distributions. 相似文献
Vicksburg loess is characterized by preferred orientation of constituent grains, which on the average dip 4° toward the west (N 80–85°W). This investigation was undertaken to study, quantitatively, the relationship between natural fabric anisotropies of Vicksburg loess and the orientation of applied stress distribution Results of the study indicate the fabric anisotropies in Vicksburg loess are reflected by definite variation in triaxial shear strength of dry and moist specimens.
In two series of triaxial tests, ultimate strength of the loess is maximum where σ1 is perpendicular to grain orientation, and it is reduced where the principal stresses are 45° to the fabric plane. In this respect, Vicksburg loess may serve as a structural model for granular earth materials in illustrating the influence of fabric on ultimate strength. Moreover, the Mohr-Coulomb fracture line consists of two line segments, with an increase in slope at higher confining pressure. This characteristic suggests that poorly-cemented sands, or sandstones, and silts, or siltstones, may undergo two failures: one at small strains where cement bonds are disrupted and the other at larger strains where internal shearing resistance of granular components is exceeded. 相似文献
This note reviews the nature of the traditional (Mädler) lunar nomenclature and the recent developments based on the use of more than 2000 named provinces. It appears that the new nomenclature is less efficient than the old in many cases and may lead to an impossible publication situation. The unnecessary break with the past is especially critized. 相似文献
We present measurements of hillslope debris flow impact pressures on small obstacles. Two impact sensors have been installed in a real-scale experimental site where 50?m3 of water-saturated soil material are released from rest. Impact velocities vary between 2 and 13?m/s; flow heights between 0.3 and 1.0?m. The maximum impact pressures measured over 15 events represent between 2 and 50 times the equivalent static pressures. The measurements reveal that quadratic velocity-dependent formulas can be used to estimate impact pressures. Impact coefficients C are constant from front to tail and range between 0.4?<?C?<?0.8 according to the individual events. The pressure fluctuations to depend on the sensor size and are between 20% and 60% of the mean pressure values. Our results suggest that hazard guidelines for hillslope debris flows should be based on quadratic velocity-dependent formulas. 相似文献
We measured in situ 10Be, 26Al and36Cl on glacial deposits as old as 1.1 Myr in the southernmost part of Patagonia and on northern Tierra del Fuego to understand boulder and moraine and, by inference, landscape changes. Nuclide concentrations indicate that surface boulders have been exposed for far less time than the ages of moraines they sit upon. The moraine ages are themselves constrained by previously obtained 40Ar/39Ar ages on interbedded lava flows or U-series and amino acid measurements on related (non-glacial) marine deposits. We suggest that a combination of boulder erosion and their exhumation from the moraine matrix could cause the erratics to have a large age variance and often short exposure histories, despite the fact that some moraine landforms are demonstrably 1 Myr old. We hypothesize that fast or episodic rates of landscape change occurred during glacial times or near the sea during interglacials. Comparison with boulder erosion rates and exhumation histories derived for the middle latitudes of semi-arid Patagonia imply different geomorphic processes operating in southernmost South America. We infer a faster rate of landscape degradation towards the higher latitudes where conditions have been colder and wetter. 相似文献
Landsat MSS images and SPOT HRV data were employed to map the changes in turbidity levels in the Zhujiang estuarine region, South China, during the dry season in the period 1973–1987 at low and high tides. Analysis of turbidity trends and changes in the spatial pattern of high turbidity class was carried out with a GIS software—IDRISI. It was concluded that with the use of OVERLAY and RECLASS functions in the GIS approach a large number of turbidity maps could be easily compared and the turbidity trend determined. The GIS approach further permitted evaluation of the importance of such factors as water depths, mean tidal differences, and water salinity to sedimentation in the study region. 相似文献
Although its use is widespread in several other scientific disciplines, the theory of tensor invariants is only marginally
adopted in gravity field modeling. We aim to close this gap by developing and applying the invariants approach for geopotential
recovery. Gravitational tensor invariants are deduced from products of second-order derivatives of the gravitational potential.
The benefit of the method presented arises from its independence of the gradiometer instrument’s orientation in space. Thus,
we refrain from the classical methods for satellite gravity gradiometry analysis, i.e., in terms of individual gravity gradients,
in favor of the alternative invariants approach. The invariants approach requires a tailored processing strategy. Firstly,
the non-linear functionals with regard to the potential series expansion in spherical harmonics necessitates the linearization
and iterative solution of the resulting least-squares problem. From the computational point of view, efficient linearization
by means of perturbation theory has been adopted. It only requires the computation of reference gravity gradients. Secondly,
the deduced pseudo-observations are composed of all the gravitational tensor elements, all of which require a comparable level
of accuracy. Additionally, implementation of the invariants method for large data sets is a challenging task. We show the
fundamentals of tensor invariants theory adapted to satellite gradiometry. With regard to the GOCE (Gravity field and steady-state
Ocean Circulation Explorer) satellite gradiometry mission, we demonstrate that the iterative parameter estimation process
converges within only two iterations. Additionally, for the GOCE configuration, we show the invariants approach to be insensitive
to the synthesis of unobserved gravity gradients. 相似文献