首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25186篇
  免费   474篇
  国内免费   263篇
测绘学   623篇
大气科学   1928篇
地球物理   5402篇
地质学   8838篇
海洋学   2031篇
天文学   5398篇
综合类   38篇
自然地理   1665篇
  2020年   135篇
  2019年   127篇
  2018年   290篇
  2017年   266篇
  2016年   412篇
  2015年   298篇
  2014年   422篇
  2013年   1176篇
  2012年   504篇
  2011年   782篇
  2010年   640篇
  2009年   907篇
  2008年   833篇
  2007年   794篇
  2006年   824篇
  2005年   717篇
  2004年   746篇
  2003年   710篇
  2002年   713篇
  2001年   587篇
  2000年   601篇
  1999年   571篇
  1998年   550篇
  1997年   561篇
  1996年   461篇
  1995年   459篇
  1994年   442篇
  1993年   411篇
  1992年   380篇
  1991年   327篇
  1990年   379篇
  1989年   299篇
  1988年   341篇
  1987年   376篇
  1986年   326篇
  1985年   481篇
  1984年   523篇
  1983年   530篇
  1982年   422篇
  1981年   418篇
  1980年   436篇
  1979年   381篇
  1978年   396篇
  1977年   346篇
  1976年   376篇
  1975年   344篇
  1974年   380篇
  1973年   365篇
  1972年   235篇
  1971年   187篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
In organic soils, hydraulic conductivity is related to the degree of decomposition and soil compression, which reduce the effective pore diameter and consequently restrict water flow. This study investigates how the size distribution and geometry of air‐filled pores control the unsaturated hydraulic conductivity of peat soils using high‐resolution (45 µm) three‐dimensional (3D) X‐ray computed tomography (CT) and digital image processing of four peat sub‐samples from varying depths under a constant soil water pressure head. Pore structure and configuration in peat were found to be irregular, with volume and cross‐sectional area showing fractal behaviour that suggests pores having smaller values of the fractal dimension in deeper, more decomposed peat, have higher tortuosity and lower connectivity, which influences hydraulic conductivity. The image analysis showed that the large reduction of unsaturated hydraulic conductivity with depth is essentially controlled by air‐filled pore hydraulic radius, tortuosity, air‐filled pore density and the fractal dimension due to degree of decomposition and compression of the organic matter. The comparisons between unsaturated hydraulic conductivity computed from the air‐filled pore size and geometric distribution showed satisfactory agreement with direct measurements using the permeameter method. This understanding is important in characterizing peat properties and its heterogeneity for monitoring the progress of complex flow processes at the field scale in peatlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
982.
Abstract

During the Labrador Ice Margin Experiments, LIMEX ‘87 in March 1987 and LIMEX ‘89 in March and April 1989, the Canada Centre for Remote Sensing (CCRS) CV‐580 aircraft collected synthetic aperture radar (SAR) image data over the marginal ice zone off the east coast of Newfoundland, Canada. One aspect of these experimental programs was the observation of ocean waves penetrating into the marginal ice zone (MIZ). Based upon directional wavenumber spectra derived from SAR image data, the wave attenuation rate is estimated using SAR image spectra and compared with predictions from a model developed by Liu and Mollo‐Christensen (1988). The wave and ice conditions were considerably different in LIMEX ‘87 and LIMEX ‘89. However, the model‐data comparisons are very good for all ice conditions observed. Both the model and the SAR‐derived wave attenuation rates show a characteristic roll‐over at high wavenumbers. A model for the eddy viscosity is proposed, using dimensional analysis, as a simple function of ice roughness and wave‐induced velocity. Eddy viscosities derived from SAR and wave buoy data for the wave attenuation rate show a trend that is consistent with the proposed model.  相似文献   
983.
Fifty‐five new SHRIMP U–Pb zircon ages from samples of northern Australian ‘basement’ and its overlying Proterozoic successions are used to refine and, in places, significantly change previous lithostratigraphic correlations. In conjunction with sequence‐stratigraphic studies, the 1800–1580 Ma rock record between Mt Isa and the Roper River is now classified into three superbasin phases—the Leichhardt, Calvert and Isa. These three major depositional episodes are separated by ~20 million years gaps. The Isa Superbasin can be further subdivided into seven supersequences each 10–15 million years in duration. Gaps in the geological record between these supersequences are variable; they approach several million years in basin‐margin positions, but are much smaller in the depocentres. Arguments based on field setting, petrography, zircon morphology, and U–Pb systematics are used to interpret these U–Pb zircon ages and in most cases to demonstrate that the ages obtained are depositional. In some instances, zircon crystals are reworked and give maximum depositional ages. These give useful provenance information as they fingerprint the source(s) of basin fill. Six new ‘Barramundi’ basement ages (around 1850 Ma) were obtained from crystalline units in the Murphy Inlier (Nicholson Granite and Cliffdale Volcanics), the Urapunga Tectonic Ridge (‘Mt Reid Volcanics’ and ‘Urapunga Granite’), and the central McArthur Basin (Scrutton Volcanics). New ages were also obtained from units assigned to the Calvert Superbasin (ca 1740–1690 Ma). SHRIMP results show that the Wollogorang Formation is not one continuous unit, but two different sequences, one deposited around 1730 Ma and a younger unit deposited around 1722 Ma. Further documentation is given of a regional 1725 Ma felsic event adjacent to the Murphy Inlier (Peters Creek Volcanics and Packsaddle Microgranite) and in the Carrara Range. A younger ca 1710 Ma felsic event is indicated in the southwestern McArthur Basin (Tanumbirini Rhyolite and overlying Nyanantu Formation). Four of the seven supersequences in the Isa Superbasin (ca 1670–1580 Ma) are reasonably well‐constrained by the new SHRIMP results: the Gun Supersequence (ca 1670–1655 Ma) by Paradise Creek Formation, Moondarra Siltstone, Breakaway Shale and Urquhart Shale ages grouped between 1668 and 1652 Ma; the Loretta Supersequence (ca 1655–1645 Ma) by results from the Lady Loretta Formation, Walford Dolomite, the upper part of the Mallapunyah Formation and the Tatoola Sandstone between ca 1653 and 1647 Ma; the River Supersequence (ca 1645–1630 Ma) by ages from the Teena Dolomite, Mt Les and Riversleigh Siltstones, and Barney Creek, Lynott, St Vidgeon and Nagi Formations clustering around 1640 Ma; and the Term Supersequence (ca 1630–1615 Ma) by ages from the Stretton Sandstone, lower Doomadgee Formation and lower part of the Lawn Hill Formation, mostly around 1630–1620 Ma. The next two younger supersequences are less well‐constrained geochronologically, but comprise the Lawn Supersequence (ca 1615–1600 Ma) with ages from the lower Balbirini Dolomite, and lower Doomadgee, Amos and middle Lawn Hill Formations, clustered around 1615–1610 Ma; and the Wide Supersequence (ca 1600–1585 Ma) with only two ages around 1590 Ma, one from the upper Balbirini Dolomite and the other from the upper Lawn Hill Formation. The Doom Supersequence (<1585 Ma) at the top of the Isa Superbasin is essentially unconstrained. The integration of high‐precision SHRIMP dating from continuously analysed stratigraphic sections, within a sequence stratigraphic context, provides an enhanced chronostratigraphic framework leading to more reliable interpretations of basin architecture and evolution.  相似文献   
984.
Abstract

Trends in Canadian temperature and precipitation during the 20th century are analyzed using recently updated and adjusted station data. Six elements, maximum, minimum and mean temperatures along with diurnal temperature range (DTR), precipitation totals and ratio of snowfall to total precipitation are investigated. Anomalies from the 1961–1990 reference period were first obtained at individual stations, and were then used to generate gridded datasets for subsequent trend analyses. Trends were computed for 1900–1998 for southern Canada (south of 60°N), and separately for 1950–1998 for the entire country, due to insufficient data in the high arctic prior to the 1950s.

From 1900–1998, the annual mean temperature has increased between 0.5 and 1.5°C in the south. The warming is greater in minimum temperature than in maximum temperature in the first half of the century, resulting in a decrease of DTR. The greatest warming occurred in the west, with statistically significant increases mostly seen during spring and summer periods. Annual precipitation has also increased from 5% to 35% in southern Canada over the same period. In general, the ratio of snowfall to total precipitation has been increasing due mostly to the increase in winter precipitation which generally falls as snow and an increase of ratio in autumn. Negative trends were identified in some southern regions during spring. From 1950–1998, the pattern of temperature change is distinct: warming in the south and west and cooling in the northeast, with similar magnitudes in both maximum and minimum temperatures. This pattern is mostly evident in winter and spring. Across Canada, precipitation has increased by 5% to 35%, with significant negative trends found in southern regions during winter. Overall, the ratio of snowfall to total precipitation has increased, with significant negative trends occurring mostly in southern Canada during spring.

Indices of abnormal climate conditions are also examined. These indices were defined as areas of Canada for 1950–1998, or southern Canada for 1900–1998, with temperature or precipitation anomalies above the 66th or below the 34th percentiles in their relevant time series. These confirmed the above findings and showed that climate has been becoming gradually wetter and warmer in southern Canada throughout the entire century, and in all of Canada during the latter half of the century.  相似文献   
985.
Abstract

The eddy flux of a conservative scalar in a time‐dependent rotary velocity field may have a component that is normal to the scalar gradient. This component is the “skew flux”, which consists of the scalar transport by the Stokes velocity and a part that is always non‐divergent (and hence does not affect scalar evolution). Since tidal velocity fields usually have rotary features, tidal‐band eddy scalar fluxes may include a skew component that can be useful in indicating the occurrence of non‐linear current interactions.

The skew temperature flux associated with the semidiurnal tide in a continental shelf region is demonstrated using simple models, and moored current and temperature observations from Georges Bank. The observed fluxes on the Bank are largely directed along isobaths, with apparent contributions from the topographic rectification of the barotropic tidal current over the Bank's side and from the rotary tidal ellipses in a frontal region. Simple models indicate that the weaker cross‐isobath fluxes can arise through the influence of frictionally induced vertical structure on topographic tidal rectification, a baroclinic tidal current interaction, or the interaction of baroclinic and barotropic tidal currents. In some cases, the simple models show qualitative agreement with the observed fluxes and currents but, in general, more realistic models and better estimates of the background mean temperature field are required to obtain quantitative estimates of the relative importance of these interactions and other processes. Nevertheless, the observations and models suggest that non‐linear interactions involving both barotropic and baroclinic tidal currents are occurring on Georges Bank.  相似文献   
986.
The Lower Cretaceous Fortress Mountain Formation occupies a spatial and temporal niche between syntectonic deposits at the Brooks Range orogenic front and post‐tectonic strata in the Colville foreland basin. The formation includes basin‐floor fan, marine‐slope and fan‐delta facies that define a clinoform depositional profile. Texture and composition of clasts in the formation suggest progressive burial of a tectonic wedge‐front that included older turbidites and mélange. These new interpretations, based entirely on outcrop study, suggest that the Fortress Mountain Formation spans the boundary between orogenic wedge and foredeep, with proximal strata onlapping the tectonic wedge‐front and distal strata downlapping the floor of the foreland basin. Our reconstruction suggests that clinoform amplitude reflects the structural relief generated by tectonic wedge development and load‐induced flexural subsidence of the foreland basin.  相似文献   
987.
Abstract

A two‐dimensional, hydrostatic numerical model of the tides in Knight Inlet is compared with observations of velocity and density obtained from three cyclesonde moorings. The observations from a fourth cyclesonde mooring were used to provide boundary data at the open end of the model. The time period in the fjord that the model simulates was a period of high, freshwater runoff, so that the fjord had a distinct, surface layer. The use of high, vertical resolution was avoided by attaching a homogeneous, fresh, surface layer to the top of the model. The density equation was linearized about a mean, fixed density field, and the mixing of density was not allowed.

The model reproduces the semidiurnal (M2, S2 and N2) and diurnal (K1 and O1) velocity and density signals in the inlet. The shallow‐water constituents (M4 and MK3) are reproduced even though the density equation has been linearized. The fortnightly constituent (MSf) is poorly simulated. When the advection terms in the momentum equation are set to zero, the basic features of the semidiurnal and diurnal constituents are still reproduced, but the shallow‐water constituents are poorly simulated.

The energy flux along the inlet of the M2 internal tide is insensitive to the advective terms in the momentum equation. The total rate of dissipation of M2 energy is similar to the energy flux in the M2 internal tide near the sill, which implies that, according to the model, most of the energy removed from the barotropic tide is fed into the internal tide. The majority of the energy in the M2 internal tide is dissipated close to the sill of the inlet, but enough of the energy makes its way to the head of the inlet to reflect and set up a recognizable standing wave pattern.  相似文献   
988.
Abstract

The nonlinear equations of motion are integrated numerically in time for a region of x‐y‐z space of volume 3h × h × h, where h turns out to be a height slightly above the level where the wind first attains the geostrophic flow direction. Only the ideal case is treated of a horizontal lower boundary, neutral stability, horizontal homogeneity of all dependent mean variables except the mean pressure, and statistically steady state. The resulting flow patterns are turbulent and the eddies transport required amounts of momentum vertically.

Topics which are investigated include the relative directions of stress, wind shear and wind; differences in Ekman wind spirals for the neutral numerical case and a stable atmospheric case; profiles of dimensionless turbulence statistics; effect of allowing the mean density to be either constant or to decrease with height; effect of the wind direction or latitude upon the turbulence intensities; and characteristic structure of the eddies in the planetary boundary layer.  相似文献   
989.
This paper presents the development of a probabilistic multi‐model ensemble of statistically downscaled future projections of precipitation of a watershed in New Zealand. Climate change research based on the point estimates of a single model is considered less reliable for decision making, and multiple realizations of a single model or outputs from multiple models are often preferred for such purposes. Similarly, a probabilistic approach is preferable over deterministic point estimates. In the area of statistical downscaling, no single technique is considered a universal solution. This is due to the fact that each of these techniques has some weaknesses, owing to its basic working principles. Moreover, watershed scale precipitation downscaling is quite challenging and is more prone to uncertainty issues than downscaling of other climatological variables. So, multi‐model statistical downscaling studies based on a probabilistic approach are required. In the current paper, results from the three well‐reputed statistical downscaling methods are used to develop a Bayesian weighted multi‐model ensemble. The three members of the downscaling ensemble of this study belong to the following three broad categories of statistical downscaling methods: (1) multiple linear regression, (2) multiple non‐linear regression, and (3) stochastic weather generator. The results obtained in this study show that the new strategy adopted here is promising because of many advantages it offers, e.g. it combines the outputs of multiple statistical downscaling methods, provides probabilistic downscaled climate change projections and enables the quantification of uncertainty in these projections. This will encourage any future attempts for combining the results of multiple statistical downscaling methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号