首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   4篇
  国内免费   2篇
测绘学   40篇
大气科学   24篇
地球物理   55篇
地质学   97篇
海洋学   25篇
天文学   124篇
自然地理   15篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   17篇
  2017年   8篇
  2016年   21篇
  2015年   8篇
  2014年   13篇
  2013年   25篇
  2012年   16篇
  2011年   22篇
  2010年   17篇
  2009年   15篇
  2008年   18篇
  2007年   16篇
  2006年   22篇
  2005年   14篇
  2004年   12篇
  2003年   12篇
  2002年   8篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   8篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
31.
Martha  Tapas Ranjan  Roy  Priyom  Jain  Nirmala  Khanna  Kirti  Mrinalni  K.  Kumar  K. Vinod  Rao  P. V. N. 《Landslides》2021,18(6):2125-2141
Landslides - India ranks first in the world in terms of fatal landslides. Large vulnerable area (0.42 million km2), high population density and monsoon rainfall make India’s landslide...  相似文献   
32.
33.
The geochemical reference material BHVO-1 was analysed by a variety of techniques over a six year period. These techniques included inductively coupled plasma-mass spectrometry and atomic emission spectroscopy (ICP-MS and ICP-AES, respectively), laser ablation ICP-MS and spark source mass spectroscopy. Inconsistencies between the published consensus values reported by Gladney and Roelandts (1988, Geostandards Newsletter) and the results of our study are noted for Rb, Y, Zr, Pb and Th. The values reported here for Rb, Y, Zr and Pb are generally lower, while Th is higher than the consensus value. This is not an analytical artefact unique to the University of Notre Dame ICP-MS facility, as most of the BHVO-1 analyses reported over the last ten to twenty years are in agreement with our results. We propose new consensus values for each of these elements as follows: Rb = 9.3 ± 0.2 μg g-1 (compared to 11 ± 2 μg g-1), Y = 24.4 ± 1.3 μg g-1 (compared to 27.6 ± 1.7 μg g-1), Zr = 172 ± 10 μg g-1 (compared to 179 ± 21 μg g-1), Pb = 2.2 ± 0.2 μg g-1 (compared to 2.6 ± 0.9 μg g-1) and Th = 1.22 ± 0.02 μg g-1 (compared to 1.08 ± 0.15 μg g-1).  相似文献   
34.
Numerical simulation of fault reactivation phenomenon   总被引:1,自引:0,他引:1  
Two-dimensional finite element method was used for evaluating the effect of orthogonal compression on precursor faults. The tendency of reactivation of precursor faults as thrust or normal was analyzed involving the positions and angles of precursor faults with the stresses, strains and displacements. Twelve cases were taken up with different combinations of precursor fault angles (high, >45° and low, <45°) and fault positions for analysis. Different positions and angles of precursor faults are correlated with stresses, strains, and displacements and are discussed in detail. It is hoped that this would help in understanding the past and the present geodynamics of the earth’s crust.  相似文献   
35.
36.
Inductively coupled plasma-mass spectrometry is well suited for the precise, accurate and rapid determination of rare earth elements in most geological samples. However, determination of rare earth elements in certain mantle-derived materials, without applying preconcentration techniques, remains problematical due to low natural concentrations (generally < 1 ng g−1). Consequently, USGS reference materials DTS-1 (a dunite) and PCC-1 (a partially serpentinized harzburgite) have only suggested rather than recommended values for the rare earth elements in reference material compilations. We compared results obtained using two ICP-MS instruments: a U-5000AT ultrasonic nebuliser coupled to a PQ2+ quadrupole ICP-MS and an ELEMENT sector field ICP-MS equipped with a MCN-6000 microconcentric desolvating nebuliser, with the suggested literature values for these two reference materials. Precision and accuracy of analytical methods employed by both instruments were demonstrated by excellent relative standard deviations (< 2%) and inter-laboratory agreement (< 5%) for numerous analyses of BHVO-1 and BIR-1, which are well established with rare earth elements contents at the μg g−1 level. Repeat analyses of DTS-1 and PCC-1 at each laboratory indicate that each method is generally precise to better than 5% at sub-g g−1 levels. Furthermore, values from both instruments generally agree to within 10%. Our DTS-1 and PCC-1 values agree reasonably well with selected data reported in the literature (except for Ce and Sm in DTS-1) but exhibit poorer agreement with reported compilation values. With the demonstrated level of precision and accuracy, we contend that these new values for DTS-1 and PCC-1, generated by two different instruments, are the best estimates of the true whole-rock composition of these samples reported to date.  相似文献   
37.
High sensitivity and low detection limits would seem to make inductively coupled plasma-mass spectrometry (ICP-MS) an ideal analytical tool for determining low (sub-μg g-1) concentrations of the rare earth elements (REE), Y, Zr, Nb, Hf, Ta, Sn, W, Mo, Th, and U in most mafic materials (e.g. Hall and Plant 1992). However, the generally "sticky" nature exhibited by most of the high field strength elements (HFSEs: Zr, Nb, Hf, Ta, Th and U) as well as Sn, W and Mo can result in spurious results due to memory effects transmitted between unknowns and calibration samples. This, in turn, can seriously compromise the sensitivity, accuracy, and precision of ICP-MS analyses for these elements in geological materials. Data resulting from analyses with poor accuracy and precision can lead to erroneous interpretation and misleading petrogenetic modelling. To resolve this problem, we propose an effective wash protocol for these critical trace elements.  相似文献   
38.
Snow cover depletion curve (SDC) is one of the important variables in snow hydrological applications, and these curves are very much required for snowmelt runoff modeling in a snowfed catchment. Remote sensing is an important source of snow cover area which is used for preparation of SDC. Snow cover maps produced by Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are one of the best source of satellite-based snow cover area at a regular interval. Therefore, in this study, snow cover maps have been prepared for the years 2000?C2005 using MODIS data. The study area chosen viz. Beas basin up to Pandoh dam falls in western Himalayan region. For snowmelt runoff modeling, catchment is divided into number of elevation zones and SDC is required for each zone. When sufficient satellite data are not available due to cloud cover or due to some other reasons, then SDC can to be generated using temperature data. Under changed climate conditions also, modified SDC is required. Therefore, to have SDC under such situations, a relationship between snow cover area and cumulative mean temperature has been developed for each zone of the catchment. This procedure of having snow cover maps has two main purposes. First, it could potentially be used to generate snow cover maps when cloud-free satellite data are not available. Second, it can be used to generate snow-covered area in a new climate to see the impact of climate change on snowmelt runoff studies.  相似文献   
39.
An integrated geological analysis of the Himalaya and Indo-Gangetic Plains demonstrates that the Great Vindhyan Basin incorporating large parts of these morphotectonic units were uplifted into an uneven landmass due to the Pre-Mesozoic orogenic cycle. This uneven landmass was eroded off largely during a considerable part of the Devonian and Carboniferous thereby causing partial absence of sedimentary sequences of these periods except in parts of the Tethys Himalaya. The Late Paleozoic epeirogenic movements brought about renewed sedimentation in the Lesser and Tethys Himalayas in the Krol and Tethys Basins, respectively, which was terminated by the Himalayan Orogeny during Late Cretaceous—Early Eocene.  相似文献   
40.
Abstract

The strong wet and dry seasons of tropical monsoon hydrology in India necessitate development of storage and flow diversion schemes for utilization of water to meet various social and economic needs. However, the river valley schemes may cause adverse flow-related impacts due to storage, flow diversion, tunnelling and spoil disposal. There may be critical reaches in which altered flows are not able to sustain the river channel ecology and riparian environment that existed prior to implementation of the storage and diversion schemes. In the past, environmental flows in India have usually been understood as the minimum flow to be released downstream from a dam as compensation for riparian rights, without considering the impacts on the river ecosystem. Rivers in India have been significantly influenced by anthropogenic activities over the past 60 years and have great social and religious significance to the vast population. This paper explores various aspects of past, present and future environmental flow assessment (EFA) in India highlighted by case studies from rivers across the nation. It demonstrates that multidisciplinary studies requiring expertise from a range of fields are needed for EFA, and that environmental flows are necessary for aquatic ecosystems to remain in a healthy state and for the sustainable use of water resources. The major focus areas for the development of EFA research in India are the creation of a shareable database for hydrological, ecological and socioeconomic data, developing hydrology–ecology relationships, evaluation of ecosystem services, addressing pollution due to anthropogenic activities and promotion of research on EFA. At the same time, efforts will be needed to develop new methods or refine existing methods for India.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Jain, S.K. and Kumar, P., 2014. Environmental flows in India: towards sustainable water management. Hydrological Sciences Journal, 59 (3–4), 751–769.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号