首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   10篇
地球物理   35篇
地质学   66篇
海洋学   19篇
天文学   52篇
自然地理   7篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   4篇
  2017年   9篇
  2016年   13篇
  2015年   6篇
  2014年   6篇
  2013年   12篇
  2012年   7篇
  2011年   12篇
  2010年   13篇
  2009年   15篇
  2008年   9篇
  2007年   3篇
  2006年   8篇
  2005年   8篇
  2004年   10篇
  2003年   8篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
41.
Mucerino  Luigi  Carpi  Luca  Schiaffino  Chiara F.  Pranzini  Enzo  Sessa  Eleonora  Ferrari  Marco 《Natural Hazards》2021,105(1):137-156
Natural Hazards - Rip currents are one of the most significant environmental hazards for beachgoers and are of interest to coastal scientists. Several studies have been conducted to understand rip...  相似文献   
42.
43.
Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) are two classes of micropollutants intensively monitored and regulated due to their toxicity, persistency and wide diffusion. Their concentrations have been investigated in sea-microlayer (SML) and sub-surface water (SSW) samples collected at two sites of the Venice Lagoon, a fragile ecosystem highly influenced by industrial and anthropogenic emissions. The total sigmaPCB concentration varies from 0.45 ng/l to 2.1 ng/l in SSW while a clear enrichment is observed in the SML, where it ranges from 1.2 ng/l to 10.5 ng/l. The total sigmaPAH concentration shows marked differences between the two stations and varies from 12.4 ng/l to 266.8 ng/l in SSW; in SML it is more uniform and ranges from 19.6 ng/l to 178.9 ng/l. The enrichment factors are not larger than 1 for both pollutants in the 'dissolved' phase, while they are most significant for the 'particulate' phase (sigmaPCB: 5-9; sigmaPAH: 4-14).  相似文献   
44.
C. Ferrari  S. Brooks  C. Leyrat  L. Spilker 《Icarus》2009,199(1):145-153
The CIRS infrared spectrometer onboard the Cassini spacecraft has scanned Saturn's A ring azimuthally from several viewing angles since its orbit insertion in 2004. A quadrupolar asymmetry has been detected in this ring at spacecraft elevations ranging between 16° to 37°. Its fractional amplitude decreases from 22% to 8% from 20° to 37° elevations. The patterns observed in two almost complete azimuthal scans at elevations 20° and 36° strongly favor the self-gravity wakes as the origin of the asymmetry. The elliptical, infinite cylinder model of Hedman et al. [Hedman, M.M., Nicholson, P.D., Salo, H., Wallis, B.D., Buratti, B.J., Baines, K.H., Brown, R.H., Clark, R.N., 2007. Astron. J. 133, 2624-2629] can reproduce the CIRS observations well. Such wakes are found to have an average height-to-spacing ratio H/λ=0.1607±0.0002, a width-over-spacing W/λ=0.3833±0.0008. Gaps between wakes, which are filled with particles, have an optical depth τG=0.1231±0.0005. The wakes mean pitch angle ΦW is 70.70°±0.07°, relative to the radial direction. The comparison of ground-based visible data with CIRS observations constrains the A ring to be a monolayer. For a surface mass density of 40 g cm−2 [Tiscarino, M.S., Burns, J.A., Nicholson, P.D., Hedman, M.M., Porco, C.C., 2007. Icarus 189, 14-34], the expected spacing of wakes is λ≈60 m. Their height and width would then be H≈10 m and W≈24 m, values that match the maximum size of particles in this ring as determined from ground-based stellar occultations [French, R.G., Nicholson, P.D., 2000. Icarus 145, 502-523].  相似文献   
45.
Meteoric smoke particles (MSPs) form through the vaporization of meteoroids and the subsequent re-condensation of metallic species in the mesosphere. Recently, iridium and platinum enrichments have been identified in Greenland ice layers and attributed to the fallout of MSPs supplying polar latitudes with cosmic matter during the Holocene. However, the MSP fallout to Antarctica during the Earth's climatic history remains essentially unknown.

We have determined iridium and platinum in deep Antarctic ice from Dome C and Vostok dated back to 240 kyrs BP. We find high super-chondritic fluxes during warm periods and low meteoric accretion during glacial times, a pattern that is opposite to any known climatic variation in dust fallout to polar regions. The proposed explanation of this accretion regime is a weaker polar vortex during warm periods, allowing peripheral air masses enriched in volcanic iridium and platinum to penetrate inland to Antarctica. The MSP signal emerges only during cold phases and is four times lower than in the Greenland ice cap where more snow accumulates. This suggests that wet deposition is an important route of cosmic material to the Earth's surface.  相似文献   

46.
Planktonic foraminiferal analysis of the Erto section in the Vajont valley (Southern Alps, northern Italy) reveals a relatively complete succession across the Cretaceous–Tertiary (K–T) boundary. The turnover of planktonic foraminiferal fauna was studied for a stratigraphic interval spanning theAbathomphalus mayaroensisZonep.p., Pseudotextularia deformisZone,Guembelitria cretaceaZone,Parvularugoglobigerina eugubinaZone,Eglobigerina eobullioidesSubzone, andParasubbotina pseudobulloidesZonep. p.The extinction of most large, ornate, late Maastrichtian species occurs below a black ‘boundary clay’ (2–4 cm thick); however, part of the Late Cretaceous species, mainly heterohelicidids and hedbergellids, were found over an interval of more than 100 cm above the boundary. Although a relatively high number of species occur for the last time in the main extinction phase, the abundance of these outgoing species is less than 20% of the total population; unkeeled or weakly keeled, simple-shaped forms (heterohelicids, globotruncanellids, hedbergellids) constitute the bulk of the planktonic foraminiferal population both in uppermost Maastrichtian and lowermost Danian beds. The first Tertiary species (‘Globigerinaminutulaand ‘Globigerinafringa) appear just above the ‘boundary clay’;Parvularuglobigerina eugubinaoccurs a few centimeters above. A marked increase in abundance and diversity in the Tertiary planktonic foraminiferal population occurs at the base of theEoglobigerina eobulloidesSubzone.  相似文献   
47.
Here we review the multiple interactions between the endemic Mediterranean seagrass, Posidonia oceanica, and coastal geomorphologic processes as an outstanding example of biogeomorphology, taking into account recent advances in the field. Seagrass meadows are among the most important elements for the functioning of marine coastal ecosystems, and represent a major focus for research and conservation. Being considered a priority habitat, P. oceanica meadows are protected by several European Union directives and national laws. In this paper we examine: the role of sedimentary features in controlling the development of the meadows; the interplay between P. oceanica leaf litter (i.e. beached necromass) cast ashore and erosional‐depositional processes on the beaches; the interactions between meadows and nearshore hydrodynamics, and; possible linkages between geomorphological features of the seafloor and the architecture of meadows. Finally, we provide perspectives for future research on P. oceanica and other Mediterranean seagrass meadows in a biogeomorphological context with specific reference to climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
48.
This paper reviews our current knowledge of Saturn's rings’ physical properties as derived from thermal infrared observations. Ring particle composition, surface structure and spin as well as the vertical structure of the main rings can be determined. These properties are the key to understand the origin and evolution of Saturn's rings. Ring composition is mainly constrained by observations in the near-infrared but the signature of some probable contaminants present in water ice may also be found at mid-infrared wavelengths. The absence of the silicate signature limits nowadays their mass fraction to 10−7±1. Recent measurements on the thermal inertia of the ring particle surface show it is very low, of the order of 5±2 Jm−2 K−1 s−1/2. New models and observations of the complete crossing of the planetary shadow are needed to attribute this low value either to compact regoliths covered by cracks due to collisions and thermal stresses or to large fluffy and irregular surfaces. Studies of the energy balance of ring particles show a preference for slowly spinning particles in the main rings. Supplementary observations at different phase angles, showing the temperature contrast between night and day sides of particles, and new models including finite spin and thermal inertia, are needed to constrain the actual spin distribution of ring particles. These results can then be compared to numerical simulations of ring dynamics. Many thermal models have been proposed to reproduce observations of the main rings, including alternative mono- or many-particles-thick layers or vertical heterogeneity, with no definitive answer. Observations on the lit and dark faces of rings as a function of longitude, at many incidence and emission angles, would provide prime information on the vertical thermal gradient due to interparticle shadowing from which constraints on the local vertical structure and dynamics can be produced. Future missions such as Cassini will provide new information to further constrain the ring thermal models.  相似文献   
49.
We present a 2.5D magnetohydrodynamic (MHD) simulation of the acceleration of a collimated jet from a magnetized accretion disk. We employ a MHD Adaptive Mesh Refinement (AMR) code (FLASH—University of Chicago). Thanks to this tool we can follow the evolution of the system for many dynamical timescales with a high-spatial resolution. Assuming an initial condition in which a Keplerian disk, thus with no accretion motions, is threaded by a uniform poloidal magnetic field, we show how both the accretion flow and the acceleration of the outflow occur, and we present in detail which are the forces responsible for the jet launching and collimation. Our simulation also shows how the collimating forces due to the self-generated toroidal magnetic field can produce some peculiar knotty features.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号