首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   0篇
测绘学   2篇
大气科学   8篇
地球物理   47篇
地质学   282篇
海洋学   31篇
天文学   103篇
  2023年   3篇
  2022年   8篇
  2021年   14篇
  2020年   17篇
  2019年   19篇
  2018年   37篇
  2017年   31篇
  2016年   18篇
  2015年   6篇
  2014年   19篇
  2013年   26篇
  2012年   26篇
  2011年   31篇
  2010年   15篇
  2009年   23篇
  2008年   23篇
  2007年   32篇
  2006年   43篇
  2005年   15篇
  2004年   9篇
  2003年   10篇
  2002年   10篇
  2001年   9篇
  2000年   5篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1981年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有473条查询结果,搜索用时 0 毫秒
131.
132.
We have performed speckle interferometry with the 6-m telescope of the Special Astrophysical Observatory and spectroscopy (at 3700–9200 Å) with the 2-m telescope at Peak Terskol of the spectroscopic and interferometric binary 9 Cyg, which is a composite-spectrum star with an orbital period of 4.3 yrs. The atmosphere of the system’s primary component is analyzed in detail. The luminosities of both components estimated to be L 1 = 103.8 L , L 2 = 55.2 L , where L is the solar luminosity, and their effective temperatures to be T e (1) = 5300 K and T e (2) = 9400 K. The abundances of C, N, O, Fe, and other elements in the primary’s atmosphere have been derived. The chemical composition shows signatures of mixing of material from its atmosphere and the region of nuclear reactions. The evolutionary status of 9 Cyg has been determined. The binary’s age is about 400 million years; the brighter star is already in the transition to becoming a red giant, while the secondary is still in the hydrogen-burning stage near the zero-age main sequence. We suggest an evolutionary model for the binary’s orbit that explains the high eccentricity, e = 0.79.  相似文献   
133.
We present the results of our study of the physical and dynamical parameters of the multiple system HD 222326. A new method for determining the individual radial velocities of components in wide binary and multiple systems in the case of small radial-velocity differences (δV r ≤ the FWHMfor the line profiles) is suggested and tested for both model systems and the binary HD 10009. This testing yielded the component radial velocities V r 1,2 for HD 10009, enabling us to derive the center-of mass velocity, V γ, for the first time. We determined the radial velocities of the components of HD 222326 from high-resolution spectra, and refined the orbital parameters of the subsystems using speckle-interferometric observations. A combined spectroscopic and speckle interferometric analysis enabled us to find the positions of the components in the spectral type—luminosity diagram and to estimate their masses. It is likely that the components are all in various evolutionary stages after leaving the main sequence. We analyzed the dynamical evolution of the system using numerical modeling in the gravitational three-body problem and the known stability criteria for triple systems. The system is probably stable on time scales of at least 106 years. The presence of a fourth component in the system is also suggested.  相似文献   
134.
Several alternative points of view currently exist on the origin of the primary sources of diamonds from the Cenozoic Western Urals placers. Some researchers suppose that their economic diamond resource potential is related to diamonds from tuffisitic facies of the mantle kimberlites-lamproites or impact structures. Other researchers suggest that diamonds originated from the eroded sandstones of the Upper Emsian Takaty Formation of the Lower Devonian, which represents ancient (fossil) placers or intermediate reservoirs. It is assumed that these reservoirs collected diamonds from worn kimberlite bodies, which were located in the Urals or on the East European platform (EEP). This paper presents the first U-Pb (LA-ICP-MS) age of detrital zircons from quartz sandstones of the Takaty Formation, which spans a range from 1857.5 ± 53.8 to 3054.0 ± 48.0 Ma. The absence of detrital zircons younger than 1.86 Ga excludes that the structural complexes of the Uralian, Fennoscandian, and Sarmatian EEP parts were the provenance areas that supplied the clastic material to the sedimentary basin, which accumulated the Takaty Formation. The similar age of our zircons and ancient crystalline complexes of the Volga-Uralian EEP part allows consideration that it was a single provenance area. If we assume that the diamond resource potential of the Western Urals is completely or partly related to the ancient diamond placers from the Takaty Formation, then the intermediate diamond reservoirs from its structure originated due to redeposition of destruction products of primary diamond-bearing rocks of the Volga-Uralia area. Thus, within the Volga-Uralian part of the EEP basement, we may expect identification of a previously unknown stage of kimberlite formation, which is significantly older than that responsible for the diamond resource potential of the Arkhangel’sk province.  相似文献   
135.
Doklady Earth Sciences - We present the results of analysis of the Strombolian-type Deception volcano after its explosive caldera-forming eruption. The volcano studied, located in the South...  相似文献   
136.
The Rb-Sr and U-Pb systematics have been studied in the metasedimentary carbonate rocks from the Paleoproterozoic Kuetsjarvi Formation. Samples were taken from the borehole drilled in the northern zone of the Pechenga Greenstone Belt in the northwestern Kola Peninsula. The carbonate section of the formation is made up of three units (from the bottom to top): (I) dolomite (68 m), (II) calcareous-dolomite (9 m), and (III) clayey calcareous (1 m) ones. Dolomites (Mg/Ca = 0.55–0.61) from the lowermost unit I contain 70.3–111 ppm Sr. Initial 87Sr/86Sr ratio in them varies within 0.70560–0.70623 and characterizes the primary continental-lacustrine carbonate sediments. Calcareous dolomites (Mg/Ca = 0.39–0.59) and dolomitic limestones of units II and III (Mg/Ca = 0.02–0.36) are enriched in Sr (285–745 and 550–1750 ppm, respectively). Initial 87Sr/86Sr ratios in these rocks (0.70406–0.70486 and 0.70407–0.70431, respectively) fall within the range typical of the Jatulian seawater, which indicates that the carbonate sediments of two upper units were formed in an open marine basin. Study of dolomites from unit I showed that the Svecofennian metamorphism more significantly affected the U-Pb systems of carbonate rocks as compared to their Rb-Sr systems. In the 207Pb/204Pb-206Pb/204Pb diagram, most data points corresponding to the carbonate constituent of dolomites define isochron with an age of 1900 ± 25 Ma (MSWD = 0.5). The same samples define a positive correlation in the 208Pb/204Pb-206Pb/204Pb plot. Since sedimentary carbonates usually do not contain Th, this correlation points to secondary enrichment of the studied dolomites in Th or thorogenic 208Pb. Hence, the obtained Pb-Pb dating can be regarded as the age of the Svecofennian metamorphic event. Three samples from dolomites of unit I lack any disturbance of the initial U-Th-Pb systematics, but their trend in the 207Pb/204Pb-206Pb/204Pb diagram deviates from the 1900 Ma isochron. Based on these samples, the model U-Pb premetamorphic age of the Kuetsjarvi carbonate sediments is 2075–2100 Ma. This interval is consistent with the age range of the Lomagundi-Jatulian event, which was responsible for the formation of carbonate sediments with high positive δ13C values.  相似文献   
137.
Insignificant role of anthropogenic carbon dioxide in the total balance of this gas in the atmosphere is shown. Relationship of the atmospheric CO2 content with climate in geological history of the Earth and history of mankind is ambiguous. It is assumed that the influence of greenhouse effect on global climate was less significant than was thought previously. Its impact is governed by complex relationship of cosmic and terrestrial factors, including the position of continental massifs.__________Translated from Litologiya i Poleznye Iskopaemye, No. 4, 2005, pp. 368–380.Original Russian Text Copyright © 2005 by Kuznetsov.  相似文献   
138.
Vein quartz from the Nether Polar Ural Province was examined by atomic emission spectrometry, gas chromatography, electron paramagnetic resonance, and electron microscopy. According to atomic emission spectrometric analysis, the total concentration of Al, Fe, Mg, Ti, Ca, Na, K, and other minor elements in the quartz varies from 8 to 47 ppm. The lowest concentrations of minor elements were detected in the granulated quartz. Giant-crystalline milk-white quartz is noted for higher concentrations of minor elements, including Na, K, and Ca, because it contains gas-liquid inclusions. The fine-grained quartz contains very small mineral inclusions and is thus noted for elevated concentrations of Ca, Fe, K, Mg, and Ti. Gas chromatographic data on the gas phase separated from the quartz at its heating indicate that this phase contains H2O, CO2, and other components. The H2O concentration reaches 429 ??g/g, while the CO2 content is commonly no higher than 20 ??g/g. Gas separation is at a maximum at temperatures of 100?C600°C, when gasliquid inclusions decrepitate, as is typical, first of all, of the giant-crystalline milk-white quartz. Gas separation continues at higher temperatures (below 1000°C) but is much less intense. The electron microscopic examination of quartz grains after their acid treatment indicates that the surface of these grains is covered by caverns of various morphology and size, which were produced by the partial dissolution of the quartz and the opening of its gas-liquid and mineral inclusions occurring near the surface; the inclusions were not, however, completely removed. The crystal structure of the quartz contains minor Al, Ge, Na, Li, Ti, and Fe. The lowest concentrations of Al and Ge paramagnetic centers are typical of the granulated (recrystallized) and fine-grained quartz. The giant-crystalline quartz, including its transparent varieties, and individual quartz crystals, first of all their smoky-citrine varieties, contain higher concentrations of minor elements. In the Nether Polar Ural Province, granulated quartz is potentially promising for producing especially pure quartz concentrates. The quality of the translucent coarse-to giant-crystalline quartz, which predominates in the resources and reserves, is deteriorated by gas-liquid inclusions in it and requires deep processing of the raw minerals.  相似文献   
139.
The review is compiled on the basis of the results of the operation of the total ozone (TO) monitoring in the CIS and Baltic countries functioning in the operational regime at the Central Aerological Observatory (CAO). The monitoring system uses the data from the national network with M-124 filter ozonometers under methodological supervision of the Main Geophysical Observatory. The quality of the functioning of the entire system is under operational control based on the observations obtained from the OMI satellite equipment (NASA, the United States). The basic TO observation data are generalized for each month of the first quarter of 2012 and for the quarter as a whole. Some results of regular observations of surface ozone content carried out at different organizations in Russia are also considered.  相似文献   
140.
The Muzkol metamorphic complex in the Central Pamirs contains widespread occurrences of corundum mineralization, sometimes with gem-quality corundum. These occurrences are spatially related to zones of metasomatic alterations in calcite and dolomite marbles and crystalline schists. The calcite marbles contain corundum together with muscovite, scapolite, and biotite; the dolomite marbles contain corundum in association with biotite; and the schists bear this mineral coexisting with biotite and chlorite. All these rocks additionally contain tourmaline, apatite, rutile, and pyrite. The biotite is typically highly aluminous (up to 1.9 f.u. Al), and the scapolite is rich in the marialite end member (60–75 mol %). The crystallization parameters of corundum were estimated using mineral assemblages at T = 600–650°C, P = 4–6 kbar, X CO 2 = 0.2–0.5 at elevated alkalinity of the fluid. The Sr concentration in the calcite and dolomite marbles is low (345–460 and 62–110 ppm, respectively), as is typical of recrystallized sedimentary carbonates. The variations in the 87Sr/86Sr ratio in the calcite and dolomite marbles (0.70852–0.70999 and 0.70902–0.71021, respectively) were controlled by the introduction of radiogenic 87Sr during the metasomatic transformations of the rocks. The isotopic-geochemical characteristics obtained for the rocks and the results of numerical simulations of the fluid-rock interactions indicate that the corundum-bearing metasomatic rocks developed after originally sedimentary Phanerozoic carbonate rocks, with the desilication of the terrigenous material contained in them. This process was a manifestation of regional alkaline metasomatism during the closing stages of Alpine metamorphism. In the course of transformations in the carbonate reservoir, the juvenile fluid flow became undersaturated with respect to silica, which was a necessary prerequisite for the formation of corundum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号