首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   2篇
大气科学   7篇
地球物理   1篇
地质学   14篇
海洋学   3篇
天文学   3篇
自然地理   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   5篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1985年   2篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1934年   1篇
  1931年   1篇
排序方式: 共有29条查询结果,搜索用时 46 毫秒
21.
A variety of finely laminated, subfossil, aragonitic stromatolites and oncolites occur on a regressive marginal flat surrounding Marion Lake, South Australia. These algal forms overlie a substrate of coarse, highly porous, moldic aragonitic limestone which passes progressively towards the take centre through a zone of interstatified aragonite and gypsum and ultimately to pure crystalline gypsum. All of these facies overlie Holocene marine carbonate bank sediments which unconformably overlie at least one upper Pleistocene marine unit. Detailed petrographic and stratigraphic studies, combined with comparative studies of related nearby lakes containing a variety of living aragonitic cryptalgalaminates, provide a model for development of the Holocene sedimentary sequence. Marion Lake last became inundated by the sea around 6500 years ago during the Holocene transgression, when a protected marine environment was initiated. Lateral sediment accretion sealed marine passes into the resulting lagoon system soon after sealvel stabilized, and a variety of gypsum and gypsum-carbonate-algal facies evolved. Pure gypsum was deposited in waters 2–3 m deep in the central basin area concurrently with formation of seasonally alternating gypsum and aragonite layers towards basin margins. Blue-green filamentous algae thrived in the shallower marginal areas and at least partly controlled carbonate deposition, which must have occurred during seasonal outflow of carbonate-rich ground water from the calcareous dune aquifer over denser gypsum-saturated waters. These systems eventually migrated towards the centre of the lake to produce the relationships preserved today. The fresher waters also leached the gypsum from the marginal gypsum-carbonate facies. Collapse due to gypsum dissolution, along with aragonite crystallization, combined to form a lake-marginal mega-polygonal facies. Teepee structures formed around polygon margins, with optimum conditions for stromatolite development occurring on the teepee crests. The actual stromatolites which occur around Marion Lake are strongly indurated and involve a variety of morphologies, the most common of which are laterally linked hemispheroids. Stacked hemispheroids and oncolites are also relatively common, along with irregular forms, many of which encrust a variety of substrate irregularities. Vertical relief of the stromatolites varies from centimetres to tens of centimetres and all forms are characterized by extremely fine internal interlaminations of alternate light and dark grey laminae which typically occur several per millimetre. The microstructure comprises micritic aragonite crystals with fibrous habit associated with organic matter, and occasional zones of abundant algal filament molds which are generally oriented normal to the laminae.  相似文献   
22.
Ⅰ. VORBEMERKUNG. Die Ordnung Nagetiere umfasst sehr viele Arten und ist die verbreitetste Tiergruppe innerhalb der Saeugetiere. Sie macht mit ihren etwa 2800 Species mehr als ein Drittel der heutigen Landsaeugetiere aus. Die Nagetiere sind auf der ganzen Welt bis zu den Polen und dem vereisten Hochgebirge an-  相似文献   
23.
24.
Reduction of biosphere life span as a consequence of geodynamics   总被引:1,自引:0,他引:1  
The long‐term co‐evolution of the geosphere–biospere complex from the Proterozoic up to 1.5 billion years into the planet's future is investigated using a conceptual earth system model including the basic geodynamic processes. The model focusses on the global carbon cycle as mediated by life and driven by increasing solar luminosity and plate tectonics. The main CO2 sink, the weathering of silicates, is calculated as a function of biologic activity, global run‐off and continental growth. The main CO2 source, tectonic processes dominated by sea‐floor spreading, is determined using a novel semi‐empirical scheme. Thus, a geodynamic extension of previous geostatic approaches can be achieved. As a major result of extensive numerical investigations, the "terrestrial life corridor", i.e., the biogeophysical domain supporting a photosynthesis‐based ecosphere in the planetary past and in the future, can be identified. Our findings imply, in particular, that the remaining life‐span of the biosphere is considerably shorter (by a few hundred million years) than the value computed with geostatic models by other groups. The "habitable‐zone concept" is also revisited, revealing the band of orbital distances from the sun warranting earth‐like conditions. It turns out that this habitable zone collapses completely in some 1.4 billion years from now as a consequence of geodynamics.  相似文献   
25.
26.
Abstract

This paper presents an expert system to help select the best method to estimate design flood flows for civil engineering works based upon the procedures available, the nature and characteristics of the basin and existing hydrological records. The system presents the user with a list of possible methods ranked in descending grade order and optionally presents explanations which support the selected choices. Ordering is achieved using the knowledge base provided by the expert. The system recommends procedures for both preliminary estimates and final designs. The system also constitutes a valuable aid for junior engineers and experienced hydrologists in the selection of methods. Its conceptual structure can be easily generalized to treat other problems of a similar nature in the field of hydrology and water resources.  相似文献   
27.
Approximately 30% of the land surface is arid, having desert or semi-desert conditions. Aerosol originating from these regions plays a significant role in climate and atmospheric chemistry of the atmosphere. Retrieving aerosol properties from space-borne platforms above desert conditions, where the surface reflectance is usually very bright, is a challenging task. The proportion of the surface to top of atmosphere (TOA) reflectance can reach values over 90%, especially for wavelength above 500 nm. For these reasons detailed knowledge of aerosol and surface optical properties from these regions is required to separate atmosphere from intrinsically bright surfaces.
An approach to retrieve aerosol properties over arid and semi-arid regions based on the Bremen Aerosol Retrieval (BAER) has been developed and validated within the Dust Aerosol Retrievals from Space-Born Instruments (DREAMS) Project, which is part of the Saharan Mineral Dust Experiment ( SAMUM, 2006 ). Combining measurements of the backscattered radiation from the Medium Resolution Imaging Spectrometer (MERIS) instrument aboard Environmental Satellite (ENVISAT) and ground-based measurements in Morocco in radiation closure experiments yields the aerosol optical properties of mineral dust at selected locations.  相似文献   
28.
MEIN  P.  MEIN  N.  MALHERBE  J.-M.  HEINZEL  P.  KNEER  F.  VON UEXKULL  M.  STAIGER  J. 《Solar physics》1997,172(1-2):161-170
A small flare was observed at the Teide Observatory on October 5, 1994. Simultaneous data were obtained at the German Vacuum Tower Telescope (VTT) with the MSDP spectrograph providing high-resolution imaging spectroscopy in two chromospheric lines, and the Gregory Coudé Telescope (GCT) providing information about the magnetic field. Basic flare characteristics are:The area of the flare kernel ( 2 x 2 arc sec) is similar in H and Caii 8542 Å.The early phase of the flare is characterized by a blue asymmetry in H and a red one in Caii 8542 Å line.The evolutions of line profiles are different; the red asymmetry observed in the Caii line is detected a few seconds later in H.The maximum asymmetry of the Caii line does not coincide with the maximum brightness.The flare occurs in a region of a strong horizontal gradient of the line-of-sight component of the magnetic field.Brightness and asymmetry in H and Caii are discussed in the context of standard flare models and velocity fields. Our observations suggest that a magnetic reconnection could occur at low levels of the solar atmosphere.  相似文献   
29.
Geological significance of Coorong dolomites   总被引:2,自引:0,他引:2  
Microcrystalline dolomite and related carbonate minerals have been forming throughout the Quaternary in shallow ephemeral alkaline lakes on the coastal plain of the Coorong area in southern Australia. These Coorong dolomites differ significantly from sabkha-type dolomites. They form in areas where evaporation rates during summer months exceed groundwater inflow rates to a series of alkaline lakes. This results in the lakes becoming desiccated during summer months. Brines resulting from this drying phase are then refluxed out of the system into seaward-flowing groundwaters of an unconfined coastal aquifer. Dolomites and other fine-grained carbonates remain behind, whilst saline and sulphate evaporite minerals are flushed out of the system. Progressive restriction by sedimentation in and around the Holocene coastal dolomite lakes results in an upward-shoaling sedimentary cycle. Basal sediments which formed in a restricted marine environment pass upwards to lacustrine dolomites or magnesites exhibiting desiccation and groundwater resurgence structures such as mudcracks and teepees. The upper Proterozoic Skillogallee Dolomite Formation, an early rift basin unit of the Adelaide Supergroup, contains dolomites which show many of the features characteristic of the peculiar groundwater hydrology which plays an important role in Coorong dolomite genesis. These features include aphanitic dolomites which lack relict saline or sulphate evaporite minerals. The Skillogallee Dolomite Formation in some areas overlies an earlier dolomitic unit, informally named the Callanna Beds, typified by abundant pseudomorphs after sulphate minerals. Sabkha style dolomites characterizing the Callanna Beds are replaced up-section by the Coorong-type dolomite of the Skillogallee Dolomite Formation. This implies the development of an increasingly more active groundwater regime. The ultimate source and mode of concentration of the necessary Mg required to form both the modern and ancient dolomites remain imperfectly understood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号