全文获取类型
收费全文 | 72617篇 |
免费 | 751篇 |
国内免费 | 499篇 |
专业分类
测绘学 | 1679篇 |
大气科学 | 4199篇 |
地球物理 | 14410篇 |
地质学 | 26333篇 |
海洋学 | 6452篇 |
天文学 | 17516篇 |
综合类 | 183篇 |
自然地理 | 3095篇 |
出版年
2022年 | 603篇 |
2021年 | 926篇 |
2020年 | 1016篇 |
2019年 | 1079篇 |
2018年 | 2333篇 |
2017年 | 2129篇 |
2016年 | 2398篇 |
2015年 | 1121篇 |
2014年 | 2221篇 |
2013年 | 3747篇 |
2012年 | 2503篇 |
2011年 | 3168篇 |
2010年 | 2909篇 |
2009年 | 3633篇 |
2008年 | 3146篇 |
2007年 | 3287篇 |
2006年 | 2988篇 |
2005年 | 1959篇 |
2004年 | 1889篇 |
2003年 | 1811篇 |
2002年 | 1716篇 |
2001年 | 1614篇 |
2000年 | 1447篇 |
1999年 | 1148篇 |
1998年 | 1198篇 |
1997年 | 1190篇 |
1996年 | 970篇 |
1995年 | 989篇 |
1994年 | 889篇 |
1993年 | 770篇 |
1992年 | 734篇 |
1991年 | 742篇 |
1990年 | 838篇 |
1989年 | 723篇 |
1988年 | 661篇 |
1987年 | 794篇 |
1986年 | 636篇 |
1985年 | 862篇 |
1984年 | 941篇 |
1983年 | 883篇 |
1982年 | 805篇 |
1981年 | 810篇 |
1980年 | 711篇 |
1979年 | 643篇 |
1978年 | 679篇 |
1977年 | 600篇 |
1976年 | 562篇 |
1975年 | 571篇 |
1974年 | 540篇 |
1973年 | 606篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
The spatial distributions of electric fields and currents in the Earth’s atmosphere are calculated. Electric potential distributions
typical of substorms and quiet geomagnetic conditions are specified in the ionosphere. The Earth is treated as a perfect conductor.
The atmosphere is considered as a spherical layer with a given height dependence of electrical conductivity. With the chosen
conductivity model and an ionospheric potential of 300 kV with respect to the Earth, the electric field near the ground is
vertical and reaches 110 Vm−1. With the 60-kV potential difference in the polar cap of the ionosphere, the electric field disturbances with a vertical
component of up to 13 V m−1 can occur in the atmosphere. These disturbances are maximal near the ground. If the horizontal scales of field nonuniformity
are over 100 km, the vertical component of the electric field near the ground can be calculated with the one-dimensional model.
The field and current distributions in the upper atmosphere can be obtained only from the three-dimensional model. The numerical
method for solving electrical conductivity problems makes it possible to take into account conductivity inhomogeneities and
the ground relief. 相似文献
993.
W. P. A. G. Ottevanger 《Pure and Applied Geophysics》1972,95(1):221-225
Summary In a polluted area, conductivity measurements do not provide significantly better fog forecasts than result from the trend of synoptic reports. 相似文献
994.
995.
996.
997.
I. V. Pekov N. V. Chukanov V. O. Yapaskurt D. I. Belakovskiy I. S. Lykova N. V. Zubkova E. P. Shcherbakova S. N. Britvin A. D. Chervonnyi 《Geology of Ore Deposits》2017,59(7):609-618
Based on a study of samples found in the Khibiny (Mt. Rasvumchorr: the holotype) and Lovozero (Mts Alluaiv and Vavnbed) alkaline complexes on the Kola Peninsula, Russia, tinnunculite was approved by the IMA Commission on New Minerals, Nomenclature, and Classification as a valid mineral species (IMA no. 2015-02la) and, taking into account a revisory examination of the original material from burnt dumps of coal mines in the southern Urals, it was redefined as crystalline uric acid dihydrate (UAD), C5H4N4O3 · 2H2O. Tinnunculite is poultry manure mineralized in biogeochemical systems, which could be defined as “guano microdeposits.” The mineral occurs as prismatic or tabular crystals up to 0.01 × 0.1 × 0.2 mm in size and clusters of them, as well as crystalline or microglobular crusts. Tinnunculite is transparent or translucent, colorless, white, yellowish, reddish or pale lilac. Crystals show vitreous luster. The mineral is soft and brittle, with a distinct (010) cleavage. Dcalc = 1.68 g/cm3 (holotype). Tinnunculite is optically biaxial (–), α = 1.503(3), β = 1.712(3), γ = 1.74(1), 2Vobs = 40(10)°. The IR spectrum is given. The chemical composition of the holotype sample (electron microprobe data, content of H is calculated by UAD stoichiometry) is as follows, wt %: 37.5 О, 28.4 С, 27.0 N, 3.8 Hcalc, total 96.7. The empirical formula calculated on the basis of (C + N+ O) = 14 apfu is: C4.99H8N4.07O4.94. Tinnunculite is monoclinic, space group (by analogy with synthetic UAD) P21/c. The unit cell parameters of the holotype sample (single crystal XRD data) are a = 7.37(4), b = 6.326(16), c = 17.59(4) Å, β = 90(1)°, V = 820(5) Å3, Z = 4. The strongest reflections in the XRD pattern (d, Å–I[hkl]) are 8.82–84[002], 5.97–15[011], 5.63–24[102?, 102], 4.22–22[112], 3.24–27[114?,114], 3.18–100[210], 3.12–44[211?, 211], 2.576–14[024]. 相似文献
998.
999.
1000.
Early Pleistocene vegetation in upland southeastern Australia included diverse rainforests and sclerophyll forests, which alternated on precessional timescales. The nature and timing of transitions between these biomes, and the role of fire in maintaining or driving transitions between them, are uncertain. Here we present a high‐resolution pollen record from Stony Creek Basin, a small Early Pleistocene palaeolake in southeastern Australia. The pollen record documents a pattern of vegetation change, over ca. 10 ka at ca. 1590–1600 ka, between sclerophyll forests, dominated by Eucalyptus, Callitris (Cupressaceae) or Casuarinaceae, and rainforests dominated by either angiosperms or conifers of the family Podocarpaceae. Transitions between these biomes typically occurred within ca. 1–2 ka. The associated charcoal record suggests that greatest biomass combustion occurred when local vegetation was dominated by Eucalyptus, and the least biomass combustion occurred when local vegetation was dominated by Podocarpaceae. However, local fires burnt in both sclerophyll and angiosperm‐dominated rainforest vegetation, at least once every several centuries. Fire was very rare (less than about one fire per millennium) only when the local vegetation was rainforest dominated by Podocarpaceae. This suggests that fire was an irregular presence in both sclerophyll‐ and angiosperm‐dominated rainforest biomes during the late Neogene, though was largely absent in Podocarpaceae‐dominated rainforests. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献