首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37106篇
  免费   293篇
  国内免费   212篇
测绘学   721篇
大气科学   1705篇
地球物理   7045篇
地质学   14625篇
海洋学   3529篇
天文学   8792篇
综合类   98篇
自然地理   1096篇
  2022年   487篇
  2021年   705篇
  2020年   754篇
  2019年   826篇
  2018年   1696篇
  2017年   1544篇
  2016年   1637篇
  2015年   614篇
  2014年   1414篇
  2013年   2035篇
  2012年   1619篇
  2011年   1898篇
  2010年   1790篇
  2009年   1986篇
  2008年   1765篇
  2007年   1978篇
  2006年   1735篇
  2005年   898篇
  2004年   815篇
  2003年   808篇
  2002年   741篇
  2001年   764篇
  2000年   630篇
  1999年   416篇
  1998年   436篇
  1997年   474篇
  1996年   336篇
  1995年   357篇
  1994年   335篇
  1993年   281篇
  1992年   284篇
  1991年   290篇
  1990年   337篇
  1989年   272篇
  1988年   258篇
  1987年   260篇
  1986年   191篇
  1985年   301篇
  1984年   302篇
  1983年   295篇
  1982年   274篇
  1981年   248篇
  1980年   265篇
  1979年   203篇
  1978年   242篇
  1977年   204篇
  1976年   177篇
  1975年   184篇
  1974年   171篇
  1973年   206篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
561.
The statistical dependence of τ/(DM)2 (the ratio of the broadening of a pulsar pulse due to scattering in the interstellar medium to the square of the pulsar’s dispersion measure) on the pulsar’s dispersionmeasure, Galactic coordinates, age, and the angular distance to the nearest supernova remnant are studied. This parameter describes the relative level of electron density fluctuations in the turbulent interstellar plasma. It is shown that the interstellar plasma turbulence level is three orders of magnitude higher in the spiral arms of the Galaxy than outside the arms. The plasma turbulence level is approximately an order of magnitude higher in the Galactic arms, in regions within ?0.3° of supernova remnants, than outside these regions. We conclude that the source of energy for the turbulence in the Galactic arms is supernova explosions in the denser medium there.  相似文献   
562.
A model for non-uniform source of synchrotron radiation with a power-law radial distribution of the magnetic field and relativistic-electron density along one-or two-sided jets is described. Non-relativistic jets with both constant cross sections (collimated jets) and cross sections that are proportional to distance (conical jets) are considered. Formulas that can be used to determine source parameters from the spectral index, source size, and index of the relativistic-electron energy spectrum based on multi-frequency observations are obtained. In the case of a conical jet, these formulas coincide with the analogous formulas for a spherical source obtained by A.P. Marscher. Relations that can be used to estimate the magnetic-field strength from the brightness temperature in the self-absorbed region are also obtained. As examples, the inhomogeneous-source model is applied to the compact radio sources at the centers of the Milky Way, Sgr A*, and the low-luminosity galactic nuclei M81* and M87*, which are associated with supermassive black holes. The inner radius of the radiation region is determined. For Sgr A*, this distance turns out to be comparable to the gravitational radius, smaller than the radius of the last stable orbit for a non-rotating black hole, and consistent with the radius of the last stable orbit expected for a rotating black hole. The inner radii in M81* and M87* are ~15 R S , an order of magnitude larger than for Sgr A*. Estimates of the magnetic field at the inner radius are 400 G for M81*, 0.65–5.3 kG for Sgr A*, and 20–100 kG for M87*. These magnetic fields and the Blandford-Znajek model for the radiation of a rotating black hole are used to estimate the rotational speed of the black holes, which are in agreement with the characteristic variability time scales for these three objects. However, the accuracy of these estimates is modest, and is limited primarily by the accuracy of interferometric measurements at millimeter wavelengths.  相似文献   
563.
We have obtained the stellar velocity dispersion in three mutually perpendicular directions in the halos and cores of clusters as a function of time for several non-stationary open-cluster models. During the dynamical evolution of the open-cluster models, the velocity dispersions undergo oscillations that do not decay during 5–10 violent-relaxation timescales, τ vr . We estimated the time for synchronization of the rotation of the open-cluster models and their motion around the center of the Galaxy, t s , which, depending on the model parameters, is t s ? (5–27)τ vr . Synchronization mechanisms for the models are discussed. The disruption of the systems in the force field of the Galaxy is strongly affected by tidal friction. We have also estimated the time for the formation of a spherical stellar-velocity distribution in the cluster models, t σ ? (6 ? 25)τ vr . The impact of instability in the stellar motions in a cluster on the formation of a spherical velocity distribution in the open-cluster models is discussed. We have noted a tendency for a weakening of the dependence of the coarse phase density of the cluster on small initial perturbations of the stellar phase coordinates in the model cluster cores for times about five times longer than the violent-relaxation time.  相似文献   
564.
To image the electrical conductivity distribution, fluxgate magnetometers are operated at five sites in Andaman and Nicobar region. Transfer functions are estimated for the period range 8–128 min, from nighttime transient geomagnetic variations, using robust regression analysis. The observed induction arrows in Andaman Islands are found to point towards east despite deep sea located towards its west. This indicates that fore-arc basin (Andaman–Nicobar deep) is more conducting than the region of outer non-volcanic Island arc.Thin sheet model requires the conductance of 10,000–35,000 S (with increase conductivity towards the south) for explaining the observed induction pattern. The observed induction pattern at Andaman–Nicobar stations can be explained in terms of high conducting Cretaceous–Tertiary sediments filling the Andaman–Nicobar deep. High conductivity over Invisible bank has been attributed to the partial melts/volatile fluids derived from the subducting Indian plate that are intruding into the eastern margin of fore-arc basin through the West Andaman Fault (WAF).The induction pattern at Great Nicobar station (Campbell Bay) may be related to the highly conducting sediments filling the Mergui basin along with mafic intrusions. Also crustal transition occurs below the Mergui Terrace at the Malayan coast contributing to the enhanced conductivity anomaly.  相似文献   
565.
The crystal structures of two new compounds (H3O)2[(UO2)(SeO4)2(H2O)](H2O)2 (1, orthorhombic, Pnma, a = 14.0328(18), b = 11.6412(13), c = 8.2146(13) Å, V = 134.9(3) Å3) and (H3O)2[(UO2)(SeO4)2(H2O)](H2O) (2, monoclinic, P21/c, a = 7.8670(12), b = 7.5357(7), c = 21.386(3) Å, β = 101.484(12)°, V = 1242.5(3) Å3) have been solved by direct methods and refined to R 1 = 0.076 and 0.080, respectively. The structures of both compounds contain sheet complexes [(UO2)(SeO4)2]2? formed by cornershared [(UO2)O4(H2O)] bipyramids and SeO4 tetrahedrons. The sheets are parallel to the (100) plane in structure 1 and to (?102) in structure 2. The [(UO2)(SeO4)2(H2O)]2? layers are linked by hydrogen bonds via interlayer groups H2O and H3O+. The sheet topologies in structures 1 and 2 are different and correspond to the topologies of octahedral and tetrahedral complexes in rhomboclase (H2O2)+[Fe(SO4)2(H2O)2] and goldichite K[Fe(SO4)2(H2O)2](H2O)2, respectively.  相似文献   
566.
The study of mineral assemblages at the Central deposit allowed us to substantially refine the evolutionary model of the deposit and reveal the two main factors that control the variability of its mineralic space: (1) heterogeneity of the ore layer, consisting of a sublittoral bottom placer (the lower part) and a subaerial dune complex partly reworked in the course of a new transgression (the upper part), and (2) postore epigenetic alteration of the ore constituent of sands, which affected the quality of ore concentrates. The results obtained will be used in geological and technological mapping and development of the production program.  相似文献   
567.
It is shown that the centroid of the heliospheric equator undergoes quasi-periodic oscillations. During the minimum of the 11-year cycle, the centroid shifts southwards (the so-called bashful-ballerina effect). The direction of the shift reverses during the solar maximum. The solar quadrupole is responsible for this effect. The shift is compared with the tilt of the heliospheric current sheet.  相似文献   
568.
The central magnetic field and rotation of the solar radiative zone are responsible for corrections to the g-mode frequencies. Magnetogravitational spectra are calculated analytically in a simple one-dimensional MHD model that goes beyond the WKB approximation and avoid any cusp resonances that trap the wave within the radiative zone in the presence of a weak magnetic background. The calculations are compared with spacecraft observations of the 1% frequency shifts for candidate g-modes found in the SOHO GOLF experiment. The magnetic correction is the main contribution for a strong magnetic field satisfying the approximation used. It is shown that a constant magnetic field of 700 kG in the radiative zone provides the required frequency shift for the n = ?10 g-mode. The rotational correction, which is due to the Coriolis force in the one-dimensional model used, is much less than a percent (αΩ ≤ 0.003).  相似文献   
569.
A multi-lithology diffusive stratigraphic model is considered, which simulates at large scales in space and time the infill of sedimentary basins governed by the interaction between tectonics displacements, eustatic variations, sediment supply, and sediment transport laws. The model accounts for the mass conservation of each sediment lithology resulting in a mixed parabolic, hyperbolic system of partial differential equations (PDEs) for the lithology concentrations and the sediment thickness. It also takes into account a limit on the rock alteration velocity modeled as a unilaterality constraint. To obtain a robust, fast, and accurate simulation, fully and semi-implicit finite volume discre tization schemes are derived for which the existence of stable solutions is proved. Then, the set of nonlinear equations is solved using a Newton algorithm adapted to the unilaterality constraint, and preconditioning strategies are defined for the solution of the linear system at each Newton iteration. They are based on an algebraic approximate decoupling of the sediment thickness and the concentration variables as well as on a proper preconditioning of each variable. These algorithms are studied and compared in terms of robustness, scalability, and efficiency on two real basin test cases.  相似文献   
570.
We propose a methodology, called multilevel local–global (MLLG) upscaling, for generating accurate upscaled models of permeabilities or transmissibilities for flow simulation on adapted grids in heterogeneous subsurface formations. The method generates an initial adapted grid based on the given fine-scale reservoir heterogeneity and potential flow paths. It then applies local–global (LG) upscaling for permeability or transmissibility [7], along with adaptivity, in an iterative manner. In each iteration of MLLG, the grid can be adapted where needed to reduce flow solver and upscaling errors. The adaptivity is controlled with a flow-based indicator. The iterative process is continued until consistency between the global solve on the adapted grid and the local solves is obtained. While each application of LG upscaling is also an iterative process, this inner iteration generally takes only one or two iterations to converge. Furthermore, the number of outer iterations is bounded above, and hence, the computational costs of this approach are low. We design a new flow-based weighting of transmissibility values in LG upscaling that significantly improves the accuracy of LG and MLLG over traditional local transmissibility calculations. For highly heterogeneous (e.g., channelized) systems, the integration of grid adaptivity and LG upscaling is shown to consistently provide more accurate coarse-scale models for global flow, relative to reference fine-scale results, than do existing upscaling techniques applied to uniform grids of similar densities. Another attractive property of the integration of upscaling and adaptivity is that process dependency is strongly reduced, that is, the approach computes accurate global flow results also for flows driven by boundary conditions different from the generic boundary conditions used to compute the upscaled parameters. The method is demonstrated on Cartesian cell-based anisotropic refinement (CCAR) grids, but it can be applied to other adaptation strategies for structured grids and extended to unstructured grids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号