首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   596篇
  免费   21篇
  国内免费   4篇
测绘学   17篇
大气科学   51篇
地球物理   156篇
地质学   211篇
海洋学   28篇
天文学   126篇
综合类   1篇
自然地理   31篇
  2021年   5篇
  2020年   5篇
  2018年   17篇
  2017年   13篇
  2016年   17篇
  2015年   24篇
  2014年   18篇
  2013年   23篇
  2012年   24篇
  2011年   43篇
  2010年   32篇
  2009年   34篇
  2008年   21篇
  2007年   24篇
  2006年   15篇
  2005年   16篇
  2004年   12篇
  2003年   18篇
  2002年   11篇
  2001年   10篇
  2000年   19篇
  1999年   13篇
  1998年   12篇
  1997年   10篇
  1996年   5篇
  1995年   10篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   9篇
  1987年   5篇
  1986年   8篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1976年   6篇
  1975年   4篇
  1973年   7篇
  1970年   8篇
  1969年   4篇
  1968年   4篇
  1952年   6篇
  1951年   4篇
  1950年   4篇
  1949年   4篇
排序方式: 共有621条查询结果,搜索用时 171 毫秒
611.
Partitioning of transition elements in Pacific pelagic sediments (35 samples) was performed by sequential chemical leaching with barium chloride/triethanolamine (easily extractable fraction), acidic cation exchange resin (carbonate phases), and hydroxylamine hydrochloride and dilute hydrochloric acid solutions (hydrous oxides). Residual metal percentages are highest in red-brown clays and siliceous ooze, intermediate in calcareous materials and low in micronodules (2 samples, > 125 μm): residual metal contents seem to be controlled predominantly by the rate of admixture of volcanoclastic materials. At higher bulk metal concentrations, the non-residual fractions of Mn, Cu, Ni and Zn generally increase both in red-brown pelagic clays and in siliceous ooze. Mn, Ni, and Co concentrations are mainly associated with the easily reducible fraction (0.1 M NH2OH·HCl), whereas Fe, Cu, and Zn exhibit higher percentages in the hydrochloric acid soluble fractions (0.3 M HCl); Zn and Cu are associated to some extent with the carbonate phase, copper with the easily extractable fraction.  相似文献   
612.
Climate engineering (CE) and carbon capture and storage are controversial options for addressing climate change. This study compares public perception in Germany of three specific measures: solar radiation management (SRM) via stratospheric sulphate injection, large-scale afforestation, and carbon capture and storage sub-seabed (CCS-S). In a survey experiment we find that afforestation is most readily accepted as a measure for addressing climate change, followed by CCS-S and lastly SRM, which is widely rejected. Providing additional information decreases acceptance for all measures, but their ranking remains unchanged. The acceptance of all three measures is especially influenced by the perceived seriousness of climate change and by trust in institutions. Also, respondents dislike the measures more if they perceive them as a way of shirking responsibility for emissions or as an unconscionable manipulation of nature. Women react more negatively to information than men, whereas the level of education or the degree of intuitive vs reflective decision making does not influence the reaction to information.

POLICY RELEVANCE

Current projections suggest that the use of climate engineering (CE) technologies or carbon capture and storage (CCS) is necessary if global warming is to be kept well below 2°C. Our article focuses on the perspective of the general public and thus supplements the dialogue between policymakers, interest groups, and scientists on how to address climate change. We show that in Germany public acceptance of potentially effective measures such as SRM or CCS-S is low and decreases even more when additional information is provided. This implies that lack of public acceptance may turn out to be a bottleneck for future implementation. Ongoing research and development in connection with CCS-S and SRM requires continuous communication with, and involvement of, the public in order to obtain feedback and assess the public’s reservations about the measures. The low level of acceptance also implies that emission reduction should remain a priority in climate policy.  相似文献   

613.
Microbially mediated sulfate reduction affects the isotopic composition of dissolved and solid sulfur species in marine sediments. Experiments and field data show that the composition is also modified in the presence of sulfate-reducing microorganisms. This has been attributed either to a kinetic isotope effect during the reduction of sulfate to sulfite, cell-internal exchange reactions between enzymatically-activated sulfate (APS), and/or sulfite with cytoplasmic water. The isotopic fingerprint of these processes may be further modified by the cell-external reoxidation of sulfide to elemental sulfur, and the subsequent disproportionation to sulfide and sulfate or by the oxidation of sulfite to sulfate. Here we report values from interstitial water samples of ODP Leg 182 (Site 1130) and provide the mathematical framework to describe the oxygen isotope fractionation of sulfate during microbial sulfate reduction. We show that a purely kinetic model is unable to explain our data, and that the data are well explained by a model using oxygen isotope exchange reactions. We propose that the oxygen isotope exchange occurs between APS and cytoplasmic water, and/or between sulfite and adenosine monophosphate (AMP) during APS formation. Model calculations show that cell external reoxidation of reduced sulfur species would require up to 3000 mol/m3 of an oxidant at ODP Site 1130, which is incompatible with the sediment geochemical data. In addition, we show that the volumetric fluxes required to explain the observed data are on average 14 times higher than the volumetric sulfate reduction rates (SRR) obtained from inverse modeling of the porewater data. The ratio between the gross sulfate flux into the microbes and the net sulfate flux through the microbes is depth invariant, and independent of sulfide concentrations. This suggests that both fluxes are controlled by cell density and that cell-specific sulfate reduction rates remain constant with depth.  相似文献   
614.
Sediments of Lake Van, Turkey, preserve one of the most complete records of continental climate change in the Near East since the Middle Pleistocene. We used seismic reflection profiles to infer past changes in lake level and discuss potential causes related to changes in climate, volcanism, and regional tectonics since the formation of the lake ca. 600 ka ago. Lake Van’s water level ranged by as much as 600 m during the past ~600 ka. Five major lowstands occurred, at ~600, ~365–340, ~290–230, ~150–130 and ~30–14 ka. During Stage A, between about 600 and 230 ka, lake level changed dramatically, by hundreds of meters, but phases of low and high stands were separated by long time intervals. Changes in the lake level were more frequent during the past ~230 ka, but less dramatic, on the order of a few tens of meters. We identified period B1 as a time of stepwise transgressions between ~230 and 150 ka, followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise during period B2, until ~30 ka. During the past ~30 ka, a regression and a final transgression occurred, each lasting about 15 ka. The major lowstand periods in Lake Van occurred during glacial periods, suggesting climatic control on water level changes (i.e. greatly reduced precipitation led to lower lake levels). Although climate forcing was the dominant cause for dramatic water level changes in Lake Van, volcanic and tectonic forcing factors may have contributed as well. For instance, the number of distinct tephra layers, some several meters thick, increases dramatically in the uppermost ~100 m of the sediment record (i.e. the past ~230 ka), an interval that coincides largely with low-magnitude lake level fluctuations. Tectonic activity, highlighted by extensional and/or compressional faults across the basin margins, probably also affected the lake level of Lake Van in the past.  相似文献   
615.
616.
This paper provides an overview of the PACS photometer flux calibration concept, in particular for the principal observation mode, the scan map. The absolute flux calibration is tied to the photospheric models of five fiducial stellar standards (α Boo, α Cet, α Tau, β And, γ Dra). The data processing steps to arrive at a consistent and homogeneous calibration are outlined. In the current state the relative photometric accuracy is ~2 % in all bands. Starting from the present calibration status, the characterization and correction for instrumental effects affecting the relative calibration accuracy is described and an outlook for the final achievable calibration numbers is given. After including all the correction for the instrumental effects, the relative photometric calibration accuracy (repeatability) will be as good as 0.5 % in the blue and green band and 2 % in the red band. This excellent calibration starts to reveal possible inconsistencies between the models of the K-type and the M-type stellar calibrators. The absolute calibration accuracy is therefore mainly limited by the 5 % uncertainty of the celestial standard models in all three bands. The PACS bolometer response was extremely stable over the entire Herschel mission and a single, time-independent response calibration file is sufficient for the processing and calibration of the science observations. The dedicated measurements of the internal calibration sources were needed only to characterize secondary effects. No aging effects of the bolometer or the filters have been found. Also, we found no signs of filter leaks. The PACS photometric system is very well characterized with a constant energy spectrum νF ν = λF λ = const as a reference. Colour corrections for a wide range of sources SEDs are determined and tabulated.  相似文献   
617.
618.
The lithostratigraphic framework of Lake Van, eastern Turkey, has been systematically analysed to document the sedimentary evolution and the environmental history of the lake during the past ca 600 000 years. The lithostratigraphy and chemostratigraphy of a 219 m long drill core from Lake Van serve to separate global climate oscillations from local factors caused by tectonic and volcanic activity. An age model was established based on the climatostratigraphic alignment of chemical and lithological signatures, validated by 40Ar/39Ar ages. The drilled sequence consists of ca 76% lacustrine carbonaceous clayey silt, ca 2% fluvial deposits, ca 17% volcaniclastic deposits and 5% gaps. Six lacustrine lithotypes were separated from the fluvial and event deposits, such as volcaniclastics (ca 300 layers) and graded beds (ca 375 layers), and their depositional environments are documented. These lithotypes are: (i) graded beds frequently intercalated with varved clayey silts reflecting rising lake levels during the terminations; (ii) varved clayey silts reflecting strong seasonality and an intralake oxic–anoxic boundary, for example, lake‐level highstands during interglacials/interstadials; (iii) CaCO3‐rich banded sediments which are representative of a lowering of the oxic–anoxic boundary, for example, lake level decreases during glacial inceptions; (iv) CaCO3‐poor banded and mottled clayey silts reflecting an oxic–anoxic boundary close to the sediment–water interface, for example, lake‐level lowstands during glacials/stadials; (v) diatomaceous muds were deposited during the early beginning of the lake as a fresh water system; and (vi) fluvial sands and gravels indicating the initial flooding of the lake basin. The recurrence of lithologies (i) to (iv) follows the past five glacial/interglacial cycles. A 20 m thick disturbed unit reflects an interval of major tectonic activity in Lake Van at ca 414 ka bp . Although local environmental processes such as tectonic and volcanic activity influenced sedimentation, the lithostratigraphic pattern and organic matter content clearly reflect past global climate changes, making Lake Van an outstanding terrestrial archive of unprecedented sensitivity for the reconstruction of the regional climate over the last 600 000 years.  相似文献   
619.
The construction of the Aica-Mules tunnel, completed in 2010, provides a relevant case history for improving the knowledge of hydrogeological issues related to the excavation of deep tunnels in granitic massifs. The Aica-Mules tunnel is a 10 km-long structure, forming part of the high-speed railway connection between Austria and Italy across the Alpine chain, located at an average depth of 500–1,000 m below the surface. Prior to and during the construction, intense hydrogeological monitoring was set up, allowing the collection of abundant data concerning: (1) the evolution of water inflows into the tunnel; (2) the chemistry and temperature of drained groundwater; and (3) the influence of tunnel drainage on springs. Based on detailed analysis of geological/hydrogeological data, this article provides an insight into the permeability distribution in granitic rocks affected by relevant brittle tectonic deformation, and the consequences of water inflow during excavation. The available time series from the principal water discharges in the tunnel have been used in order to test the reliability of some of the most commonly applied analytical methods for the forecast of water inflows into tunnels.  相似文献   
620.
Our study at this natural analog site contributes to the evaluation of methods within a hierarchical monitoring concept suited for the control of CO2 degassing. It supports the development of an effective monitoring concept for geological CO2 storage sites—carbon capture and storage as one of the pillars of the European climate change efforts. This study presents results of comprehensive investigations along a 500-m long profile within the Hartou?ov (Czech Republic) natural CO2 degassing site and gives structural information about the subsurface and interaction processes in relation to parameters measured. Measurements of CO2 concentrations and investigation of the subsurface using electrical resistivity tomography and self-potential methods provide information about subsurface properties. For their successful application it is necessary to take seasonal variations (e.g., soil moisture, temperature, meteorological conditions) into consideration due to their influence on these parameters. Locations of high CO2 concentration in shallow depths are related to positive self-potential anomalies, low soil moistures and high resistivity distributions, as well as high δ13C values and increased radon concentrations. CO2 ascends from deep geological sources via preferential pathways and accumulates in coarser sediments. Repetition of measurements (which includes the effects of seasonal variations) revealed similar trends and allows us to identify a clear, prominent zone of anomalous values. Coarser unconsolidated sedimentary layers are beneficial for the accumulation of CO2 gas. The distribution of such shallow geological structures needs to be considered as a significant environmental risk potential whenever sudden degassing of large gas volumes occurs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号