首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   7篇
地球物理   62篇
地质学   41篇
海洋学   87篇
天文学   14篇
自然地理   12篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   8篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   16篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   12篇
  2008年   10篇
  2007年   7篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   1篇
  2000年   11篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
排序方式: 共有225条查询结果,搜索用时 31 毫秒
21.
A steady quasi-geostrophic 2.5-layer model, forced by both Ekman pumping and a mass source/sink situated at the western boundary has been constructed to investigate the effect of diapycnal transport due to convection in the Okhotsk Sea and tidal mixing at the Kuril Straits on the intermediate layer in the North Pacific. The model illustrates a combined effect of the wind-driven and mass-driven circulations. First, net mass input induces a “barotropic” mode inter-gyre flow along the western boundary through the dynamical influence of Kelvin waves. This flow creates characteristic curves (geostrophic contours) that facilitate inter-gyre communication through the western boundary layer from the location of the mass source to the subtropical gyre. Due to the effect of wind-driven circulation, the offshore part turns eastward into the interior, encircles the outer rim of the region (which would otherwise be the pool region in the absence of mass input), and then encounters the western boundary. Eventually, the water fed into the lower layer flows mostly along this path and later flows away to the equatorial region. Conversely, in the upper layer, water is fed from the equator to the subtropics, and to the subpolar interior region through the western boundary current. The water then circulates along the outer rim and is absorbed into the mass sink. The model is controlled mainly by three nondimensional parameters: (1) the ratio of net mass input rate to the maximum Sverdrup transport (Q/T Sv max ), which affects the inter-gyre communication by altering the paths of geostrophic contours, (2) the ratio of a mass input rate into the lower layer to that in total (Q 2/Q), which controls the vertical structure of the inter-gyre flow, and (3) the measure of the wind forcing effect relative to the β effect, which determines the horizontal extent of the area influenced by the mass input. The other parameter regimes with respect to Q/T Sv max and Q 2/Q are also presented.  相似文献   
22.
The oceanic carbon cycle in the tropical-subtropical Pacific is strongly affected by various physical processes with different temporal and spatial scales, yet the mechanisms that regulate air-sea CO2 flux are not fully understood due to the paucity of both measurement and modeling. Using a 3-D physical-biogeochemical model, we simulate the partial pressure of CO2 in surface water (pCO2sea) and air-sea CO2 flux in the tropical and subtropical regions from 1990 to 2004. The model reproduces well the observed spatial differences in physical and biogeochemical processes, such as: (1) relatively higher sea surface temperature (SST), and lower dissolved inorganic carbon (DIC) and pCO2sea in the western than in the central tropical-subtropical Pacific, and (2) predominantly seasonal and interannual variations in the subtropical and tropical Pacific, respectively. Our model results suggest a non-negligible contribution of the wind variability to that of the air-sea CO2 flux in the central tropical Pacific, but the modeled contribution of 7% is much less than that from a previous modeling study (30%; McKinley et al., 2004). While DIC increases in the entire region SST increases in the subtropical and western tropical Pacific but decreases in the central tropical Pacific from 1990 to 2004. As a result, the interannual pCO2sea variability is different in different regions. The pCO2sea temporal variation is found to be primarily controlled by SST and DIC, although the role of salinity and total alkalinity, both of which also control pCO2sea, need to be elucidated by long-term observations and eddy-permitting models for better estimation of the interannual variability of air-sea CO2 flux.  相似文献   
23.
In order to study characteristics of horizontal crustal strains, we divide the Japanese Islands into 14 tectonic provinces consistent with the suggestion given byMatsuda (1990). We calculate frequency distribution of strain rates using the results of the Precise Control Survey initiated by the Geographical Survey Institute in 1973. This survey is a revision of old first- and second-order triangulation networks by trilateration. The principal axes and principal strains inside all the geodetic triangles are deduced from the comparison of the old triangulation and the new trilateration networks. The maximum shear strain rates are calculated by dividing the accumulated strains with the time intervals. The frequency distribution of strain rates is counted for each tectonic province and for the entire Japanese Islands. It is proved that the maximum shear strain rate with highest frequency ranges from 0.10–0.15 microstrain/a for 4409 data in the Japanese Islands. The mean value of the strain rates throughout the Japanese Islands is deduced to be 0.18 microstrain/a. We also calculated a mean value of strain rates for each tectonic province. Comparison is made between mean geodetic strain rates in the provinces and Quaternary strain rates estimated by geomorphic data. It is found that 0.3–0.4 microstrain/a of the highest order strain rate is now prevailing in the Izu province, the south Fossa-Magna collision zone, and some special provinces along the eastern part of the Japan Sea coast.  相似文献   
24.
Two sandy sediment cores (Cores D227-120 and D380) were collected from inside a deep-sea giant clam (Calyptogena soyoae) community off Hatsushima Island, western Sagami Bay, central Japan (35°59.9′N, 139°13.6′E; 1160 m deep) and a muddy sediment core (Core D227-202) was obtained from outside the community by the submersibleShinkai 2000. The chloride concentration of the pore waters is constant vertically and sulfate reduction using sedimentary organic matter occurs in Core D227-202 (21 cm long). The chloride concentrations are lower by 7% at the 7.5–9 cm depth in Core D227-120 (9 cm long) and by 3% at the 11–12 cm depth in Core D380 (16 cm long) than those of the overlying bottom waters in the cores from inside of the community. Sulfate concentration decreases remarkably and dissolved inorganic carbon, alkalinity, ammonium-N, and hydrogen sulfide concentrations increase significantly with increasing depth in Core D380.δ34S values of sulfate ions increase from +20.5 to +35.3‰ andδ13C values of dissolved inorganic carbon decrease drastically from −7.0 to −45‰ with increasing depth from the top to the bottom of the core, although theδ13C values of the organic carbon of the sediments are−23.7 ± 0.9‰ in Core D380. These results indicate that sulfate reduction using methane is active within the sediments just beneath the living clams and that the hydrogen sulfide produced can be used by endosymbiotic sulfur oxidizing bacteria living in the gills ofC. soyoae in the community.  相似文献   
25.
Thermal diffusivity, k, of three lunar rocks (10049 and 10069; Type A, Apollo 11 and 14311; Apollo 14) and a terrestrial basalt (alkaline olivine basalt, Oki-do?go, Japan) was measured under one atmosphere and in vacuum conditions (10?3 ~ 10?5 mmHg) in the temperature range from 85 to 850°K. The semi-empirical curve of k =A + B/T +CT3 is fitted to the data in each condition. The porosity of rocks strongly affects the thermal diffusivity at low temperature ( T ? 500°K) in vacuum condition. At 150°K, thermal diffusivity of lunar rocks with porosity of 5.5% (10049) and 11% (10069) at one atmosphere is about 1.7 and 3.2 times of that in vacuum, respectively. The difference between the values at one atmosphere and those in vacuum decreases as the temperature increases. Measurements of k should be made at gas pressures at least lower than 10?3 mmHg to estimate the value under lunar surface conditions.  相似文献   
26.
In usual incoherent scatter data analysis, the plasma distribution function is assumed to be Maxwellian. In space plasmas, however, distribution functions with a high energy tail which can be well modeled by a generalized Lorentzian distribution function with spectral index kappa (kappa distribution) have been observed. We have theoretically calculated incoherent scatter spectra for a plasma that consists of electrons with kappa distribution function and ions with Maxwellian neglecting the effects of the magnetic field and collisions. The ion line spectra have a double-humped shape similar to those from a Maxwellian plasma. The electron temperatures are underestimated, however, by up to 40% when interpreted assuming Maxwellian distribution. Ion temperatures and electron densities are affected little. Accordingly, actual electron temperatures might be underestimated when an energy input maintaining a high energy tail exists. We have also calculated plasma lines with the kappa distribution function. They are enhanced in total strength, and the peak frequencies appear to be slightly shifted to the transmitter frequency compared to the peak frequencies for a Maxwellian distribution. The damping rate depends on the electron temperature. For lower electron temperatures, plasma lines for electrons with a distribution function are more strongly damped than for a Maxwellian distribution. For higher electron temperatures, however, they have a relatively sharp peak.  相似文献   
27.
Apparent fracture toughness in Mode I of microcracking materials such as rocks under confining pressure is analyzed based on a cohesive crack model. In rocks, the apparent fracture toughness for crack propagation varies with the confining pressure. This study provides analytical solutions for the apparent fracture toughness using a cohesive crack model, which is a model for the fracture process zone. The problem analyzed in this study is a fluid-driven fracture of a two-dimensional crack with a cohesive zone under confining pressure. The size of the cohesive zone is assumed to be negligibly small in comparison to the crack length. The analyses are performed for two types of cohesive stress distribution, namely the constant cohesive stress (Dugdale model) and the linearly decreasing cohesive stress. Furthermore, the problem for a more general cohesive stress distribution is analyzed based on the fracture energy concept. The analytical solutions are confirmed by comparing them with the results of numerical computations performed using the body force method. The analytical solution suggests a substantial increase in the apparent fracture toughness due to increased confining pressures, even if the size of the fracture process zone is small.  相似文献   
28.
Cobalt is obtained mainly as a byproduct of the mining and metallurgical processing of copper and nickel. The amount of minable cobalt has a characteristic supply limit, which is dependent upon demand for copper and nickel. It is considered that cobalt consumption will be affected by the amount mined in the near future, because world demand has been gradually increasing, while the production from copper sulfide ores in Zaire and Zambia, major producing countries, has decreased for political, economical and technological reasons. The world demand for cobalt has surpassed the world mine production, and cobalt sales from the National Defense Stockpile of the United States and exports from Russia and cobalt recovered from stockpiled intermediates contributed to the supply in 1994. It is concluded, from a statistical point of view, that this trend of shortage and high prices for cobalt will continue in the near future.  相似文献   
29.
—Uniaxial compression, triaxial compression and Brazialian tests were conducted on several kinds of rock, with particular attention directed to the principal tensile strain. In this paper we aim to clarify the effects of the experimental environment—such as confining pressure, loading rate, water content and anisotropy—on the critical tensile strain, i.e., the measured principal tensile strain at peak load.¶It was determined that the chain-type extensometer is a most suitable method for measuring the critical tensile strain in uniaxial compression tests. It is also shown that the paper-based strain gage, whose effective length is less than or equal to a tenth of the specimen’s diameter and glued on with a rubber-type adhesive, can be effectively used in the Brazilian tests.¶The effect of confining pressure P C on the critical tensile strain ? TC in the brittle failure region was between ?0.02 × 10?10 Pa?1 and 0.77 × 10?10 Pa?1. This pressure sensitivity is small compared to the critical tensile strain values of around ?0.5 × 10?2. The strain rate sensitivities ?? TC /?{log(d|?|/dt)} were observed in the same way as the strength constants in other failure criteria. They were found to be from ?0.10 × 10?3 to ?0.52 × 10?3 per order of magnitude in strain rate in the triaxial tests. The average magnitude of the critical tensile strain ? TC increased due to the presence of water by 4% to 20% for some rocks, and decreased by 22% for sandstone. It can at least be said that the critical tensile strain is less sensitive to water content than the uniaxial compressive strength under the experimental conditions reported here. An obvious anisotropy was observed in the P-wave velocity and in the uniaxial compressive strength of Pombetsu sandstone. It was not observed, however, in the critical tensile strain, although the data do show some variation.¶A "tensile strain criterion" was proposed, based on the above experimental results. This criterion signifies that stress begins to drop when the principal tensile strain reaches the critical tensile strain. The criterion is limited to use within the brittle failure region. The critical tensile strain contains an inelastic strain component as well as an elastic one. It is affected by the strain rate, however, it is relatively insensitive to the confining pressure, the presence of water and anisotropy.  相似文献   
30.
Sixteen alluvial and terrace soils from Japan and Thailand were separated into six fractions ; an amorphous sesquioxide and combined organic matter fraction, crystalline sesquioxides, clay, silt, fine sand and coarse sand. Content of ten major and minor elements in these six fractions was analyzed; SiO2, A12O3, Fe2O3, MgO, CaO, K2O, TiO2, Rb2O and SrO were determined by X-ray fluorescence spectrometry, and Na2O was determined by neutron activation analysis. The clay, silt, fine sand and coarse sand mineralogy were estimated semi-quantitatively by X-ray diffraction methods.We propose three indices of geochemical maturity for the soils and test their usefulness as measures of the degree of weathering. Three concomitant factors are proposed to measure the relative resistate, hydrolyzate and oxidate nature of the major elements in the soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号