首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   4篇
  国内免费   7篇
测绘学   8篇
大气科学   50篇
地球物理   18篇
地质学   31篇
海洋学   55篇
天文学   38篇
自然地理   14篇
  2021年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   15篇
  2013年   8篇
  2012年   15篇
  2011年   9篇
  2010年   11篇
  2009年   15篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   9篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   6篇
  1993年   1篇
  1992年   5篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1976年   7篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1951年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
101.
Hydrographic data in the Kuroshio Extension (KE) region from 2008 to 2010 show large year-to-year variability in near-surface salinity, including a very large anomalous event in February 2010. During this event, the deep winter mixed layer in the southern KE region had higher salinity than had existed during the previous summer in September 2009. Our analysis shows that advection from the Philippine Sea along the western branch of the North Pacific subtropical gyre, taking approximately 9 months, resulted in this large salinity anomaly in February 2010 and contributes to the interannual salinity variability in the southern KE region.  相似文献   
102.
The Madden–Julian Oscillation (MJO) is the major mode of intraseasonal variability (30–60 days) in the tropics, having large rainfall impacts globally, and possibly on southern Africa. However, the latter impact is not well understood and needs to be further explored. The life cycle of the MJO, known to be asymmetric, has been nevertheless analyzed usually through methods constrained by both linearity and orthogonality, such as empirical orthogonal function analysis. Here we explore a non-linear classification method, the self-organizing map (SOM), a type of artificial neural network used to produce a low-dimensional representation of high-dimensional datasets, to capture more accurately the life cycle of the MJO and its global impacts. The classification is applied on intraseasonal anomalies of outgoing longwave radiation within the tropical region over the 1980–2009 period. Using the SOM to describe the MJO is a new approach, complimentary to the usual real-time multivariate MJO index. It efficiently captures this propagative phenomenon and its seasonality, and is shown to provide additional temporal and spatial information on MJO activity. For each node, the subtropical convection is analyzed, with a particular focus on the southern Africa region. Results show that the convection activity over the central tropical Indian Ocean is a key factor influencing the intraseasonal convective activity over the southern African region. Enhanced (suppressed) convection over the central Indian Ocean tends to suppress (enhance) convection over the southern African region with a 10-day lag by modulating the moisture transport.  相似文献   
103.
The interannual variability of East African ‘short rains’ (EASR) and its link with the Mascarene High (MH) variation are explored, using observations and reanalysis data. Correlation and composite analyses for flood and drought events reveal that the EASR variability is strongly linked to the MH zonal displacement, in particular, the zonal movement of the MH eastern ridge. When the MH eastern ridge is anomalously displaced to the west (east) of its normal position, the south east (SE) trade winds over the South Indian Ocean (SIO) anomalously strengthen (weaken). This enhances (reduces) the relatively cool and dry SE trade winds and induces cold (warm) sea surface temperature anomaly in the SIO. As a result, convection over the western equatorial SIO is suppressed (enhanced) and leads to rainfall deficits (excess) over East Africa. Droughts in East Africa are associated with a westward migration of the MH eastern ridge, while the relationship is less clear for flood events and their link to an eastward migration of the MH. Therefore, the zonal migration of the MH eastern ridge provides a novel indicator for the EASR extremes especially droughts. This revelation has immense social application for rainfall forecast over East Africa where rainfall deficits have become more prevalent against the background of deteriorating conventional forecasts for EASR droughts.  相似文献   
104.
Abstract

We study the formation of lenses of the ocean's intermediate water using a 2.5-layerβ-plane primitive equation model with localized injection of water mass. For the injecting rate of 1.0 Sv, we have observed that strong vortices are shed regularly. These vortices propagate westward much faster than the second baroclinic long Rossby wave. They are totally isolated from each other and show strong baroclinicity as well. Moreover, they remain stable over a sufficiently long period of time. Regular formation of such strong vortices in the intermediate layer has not been reported previously. The translation speed is explained using the Euler's momentum integral theorem for the nonlinear baroclinic vortex on the β-plane. We have demonstrated that coupling between the primary motion in the intermediate layer and the secondary motion in the upper layer with a meridional shift is crucial to the fast westward translation of the intense vortices. A simple dispersion formula relating the zonal translation speed with the vortex radius is also derived under the assumption of quasi-geostrophy. It has turned out that the analytical relation explains the numerical results surprisingly well despite the limitation of its derivation.  相似文献   
105.
This paper describes an investigation of pipe–soil interaction equations suggested by currently used pipeline seismic design codes and the applicability of these equations to segmented pipelines. The results of computer‐aided analyses were compared to results obtained in full‐scale experiments on a segmented ductile iron pipeline 93 mm in diameter and 15 m in length. The pipeline was installed 600 mm below the ground surface in a sandy soil compacted to two different subgrade reaction values. The type of fault considered was a reverse fault with an intersection angle of 60° with the pipeline, and the fault movement was a total of 350 mm in three same steps in the fault trace direction. The findings of this study demonstrate the necessity of considering the nature of soil behavior in pipe–soil interaction equations and the effects of connection joints on the integrated response of pipelines to fault‐induced ground deformations. A new combination of equations constituting a direction‐wise selection from among the equations proposed by currently used guidelines is introduced as a new series to describe pipe–soil interaction for segmented pipelines and is verified using the results of full‐scale experiments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
106.
Impacts of the South China Sea Throughflow (SCST) on seasonal and interannual variations of the Indonesian Throughflow are studied by comparing outputs from ocean general circulation model (OGCM) experiments with and without the SCST. The observed subsurface maximum in the southward flow through the Makassar Strait is simulated only when the SCST, which is driven by the large-scale wind, is allowed in the model. The mean volume and heat transport by the Makassar Strait Throughflow are reduced by 1.7 Sv and 0.19 PW, respectively, by the existence of the SCST in the model. The difference is particularly remarkable during boreal winter when the SCST reaches its seasonal maximum. Furthermore, the SCST is strengthened during El Niño, leading to the weakening in the southward volume and heat transport through the Makassar Strait by 0.37 Sv and 0.05 PW, respectively. These findings from the OGCM experiments suggest that the SCST may play an important role in climate variability of the Indo-Pacific Ocean.  相似文献   
107.
Using reanalysis data and snow cover data derived from satellite observations, respective influences of Indian Ocean Dipole (IOD) and El Niño/Southern Oscillation (ENSO) on the Tibetan snow cover in early winter are investigated. It is found that the snow cover shows a significant positive partial correlation with IOD. In the pure positive IOD years with no co-occurrences of El Niño, negative geopotential height anomalies north of India are associated with warm and humid southwesterlies to enter the plateau from the Bay of Bengal after rounding cyclonically and supply more moisture. This leads to more precipitation, more snow cover, and resultant lower surface temperature over the plateau. These negative geopotential height anomalies north of India are related to the equivalent barotropic stationary Rossby waves in the South Asian wave guide. The waves can be generated by the IOD-related convection anomalies over the western/central Indian Ocean. In contrast, in the pure El Niño years with no co-occurrences of the positive IOD, the anomalies of moisture supply and surface temperature over the plateau are insignificant, suggesting negligible influences of ENSO on the early winter Tibetan snow cover. Further analyses show that ENSO is irrelevant to the spring/early summer Tibetan snow cover either, whereas the IOD-induced snow cover anomalies can persist long from the early winter to the subsequent early summer.  相似文献   
108.
Using a high-resolution ocean general circulation model forced by NCEP/NCAR reanalysis data, the interannual variability of the Guinea Dome is studied from a new viewpoint of its possible link with the Atlantic Meridional Mode (AMM), which is related to the meridional migration of the Intertropical Convergence Zone (ITCZ). The dome develops off Dakar seasonally from late spring to late fall owing to the wind-induced Ekman upwelling; its seasonal evolution is associated with the northward migration of the ITCZ. When the ITCZ is located anomalously northward (southward) from late spring to early summer, as a result of the wind-evaporation-sea surface temperature (SST) positive feedback with positive (negative) SST anomaly over the Northern Hemisphere, the dome becomes unusually strong (weak) in fall as a result of stronger (weaker) Ekman upwelling. This may contribute to the decay of the AMM. Thus, the coupled nature between the AMM and the Guinea Dome could be important in understanding, modeling, and predicting the tropical Atlantic variability.  相似文献   
109.
The water and energy cycle in the Tibetan Plateau is an important component of Monsoon Asia and the global energy and water cycle. Using data at a CEOP (Coordinated Enhanced Observing Period)-Tibet site, this study presents a first-order evaluation on the skill of weather forecasting from GCMs and satellites in producing precipitation and radiation estimates. The satellite data, together with the satellite leaf area index, are then integrated into a land data assimilation system (LDAS-UT) to estimate the soil moisture and surface energy budget on the Plateau. The system directly assimilates the satellite microwave brightness temperature, which is strongly affected by soil moisture but not by cloud layers, into a simple biosphere model. A major feature of this system is a dual-pass assimilation technique, which can auto-calibrate model parameters in one pass and estimate the soil moisture and energy budget in the other pass. The system outputs, including soil moisture, surface temperature, surface energy partition, and the Bowen ratio, are compared with observations, land surface models, the Global Land Data Assimilation System, and four general circulation models. The results show that this satellite data-based system has a high potential for a reliable estimation of the regional surface energy budget on the Plateau.  相似文献   
110.
The tropical Indian Ocean climate variability is investigated using an artificial neural network analysis called self-organizing map (SOM) for both observational data and coupled model outputs. The SOM successfully captures the dipole sea surface temperature anomaly (SSTA) pattern associated with the Indian Ocean Dipole (IOD) and basin-wide warming/cooling associated with ENSO. The dipole SSTA pattern appears only in boreal summer and fall, whereas the basin-wide warming/cooling appears mostly in boreal winter and spring owing to the phase-locking nature of these phenomena. Their occurrence also undergoes significant decadal variation. Composite diagrams constructed for nodes in the SOM array based on the simulated SSTA reveal interesting features. For the nodes with the basin-wide warming, a strong positive SSTA in the eastern equatorial Pacific, a negative Southern Oscillation, and a negative precipitation anomaly in East Africa are found. The nodes with the positive IOD are associated with a weak positive SSTA in the central equatorial Pacific or positive SSTA in the eastern equatorial Pacific, a positive (negative) sea level pressure anomaly in the eastern (western) tropical Indian Ocean, and a positive precipitation anomaly over East Africa. The warming in the central equatorial Pacific appears to correspond to El Niño Modoki discussed recently. These results suggest usefulness of SOM in studying large-scale ocean–atmosphere coupled phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号