首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   3篇
测绘学   2篇
大气科学   3篇
地球物理   24篇
地质学   10篇
海洋学   13篇
天文学   17篇
综合类   1篇
自然地理   7篇
  2021年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
61.
Seasonal changes in the shape and size composition of fecal pellets were investigated with sediment trap samples from 50 and 150 m in Kagoshima Bay to evaluate how the mesozooplankton community affects fecal pellet flux. Deep vertical mixing was evident in March, and thermal stratification was developed above 50 m in June, August and November. Chlorophyll a, suspended particulate organic carbon (POC) and copepod abundance were uniform throughout the water column during the seasonal mixing and concentrated above 50 m in the stratified seasons. Calanoids were the most predominant copepods in March and poecilostomatoids composed more than 45% of the copepod community in June, August and November. Fecal pellet fluxes at 50 and 150 m were the highest in March, nearly half of POC flux. The relative contribution declined considerably in the other months, especially for less than 4% of POC flux in August. The decline was corresponded to the predominance of cyclopoids and poecilostomatoids. Cylindrical pellets dominated the fecal matters at both depths throughout the study period, while larger cylindrical pellets nearly disappeared at 150 m in June, August and November. Copepod incubation revealed that cylindrical and oval pellets were egested by calanoids and the other copepods, respectively. We suggest that cylindrical fecal pellets produced by calanoid copepods contribute to feces flux but the predominance of poecilostomatoids and/or cyclopoids decreases feces flux via the increase of oval pellets and fragmentation of larger cylindrical pellets.  相似文献   
62.
This article describes a simple, quick, and inexpensive procedure for coring unconsolidated sediment in shallow water (<30 m from water surface). A ∼1 m core is retrieved by a PVC pipe that penetrates sediment in response to the percussive force of a hand-operated hammering tool or air hammer. After retrieving the first core segment, a casing is inserted to allow access to deeper sediment layers. Pulverized sediment produced during coring is removed by a water-lubrication system that is powered by an electric pump attached to a generator. Using this system and procedure, five 2-m-long cores with excellent quality were retrieved.  相似文献   
63.
64.
The whole core squeezing method was used to simultaneously obtain profiles of nitrous oxide (N2O), nitrogenous nutrients, and dissolved oxygen in sediments of Koaziro Bay, Japan (coastal water), the East China Sea (marginal sea), and the central Pacific Ocean (open ocean). In the spring of Koaziro Bay, subsurface peaks of interstitial N2O (0.5–3.5 cm depth) were observed, at which concentrations were higher than in the overlying water. This was also true for nitrate (NO3) and nitrite (NO2) profiles, suggesting that the transport of oxic overlying water to the depth through faunal burrows induced in situ N2O production depending on nitrification. In the summer of Koaziro Bay, sediment concentrations of N2O, NO3 and NO2 were lower than in the overlying water. In most East China Sea sediments, both N2O and NO3 decreased sharply in the top 0.5–2 cm oxic layer (oxygen: 15–130 μM), which may have indicated N2O and NO3 consumption by denitrification at anoxic microsites. N2O peaks at subsurface depth (0.5–6.5 cm) implied in situ production of N2O and/or its supply from the overlying water through faunal burrows. However, the occurrence of the latter process was not confirmed by the profiles of other constituents. In the central Pacific Ocean, the accumulation of N2O and NO3 in the sediments likely resulted from nitrification. Nitrous oxide fluxes from the sediments, calculated using its gradient at the sediment–water interface and the molecular diffusion coefficient, were −45 to 6.9 nmolN m−2 h−1 in Koaziro Bay in the spring, −29 to −21 nmolN m−2 h−1 in the summer, −46 to 37 nmolN m−2 h−1 in the East China Sea, 0.17 to 0.23 nmolN m−2 h−1 in the equatorial Pacific, and <±0.2 nmolN m−2 h−1 in the subtropical North Pacific, respectively.  相似文献   
65.
A simple trap model of solar hard X-ray bursts is discussed in which nonthermal electrons trapped in a magnetic bottle precipitate into the lower chromosphere through the resonant scattering by whistlers. In such a model, the X-ray spectra produced from trapped and precipitating electrons have different spectral shape, and both of the spectra will initially soften with time, provided the precipitation dominates over collisional degradation.  相似文献   
66.
The system iron-enstatite-water was investigated at pressures around 5 GPa and at temperatures ranging from 1000 to 1200°C, using several different kinds of starting materials. Quenched samples showed the coexistence of iron, olivine and pyroxene. Synthesis of the Fe-containing olivine in the run products proves that a series of reactions, Fe + H2O → FeHx + FeO and FeO + MgSiO3 → (Mg, Fe)2SiO4, have taken place. Spherical “balls of iron” were observed in the 1200°C run. This strongly indicates that the melting temperature of iron decreased by ~ 500 K by the possible dissolution of hydrogen. Following geophysical implications are derived from these experimental results. If water was retained in the hydrous minerals in the primordial material, the iron-water reaction is expected to occur throughout the core-formation process. The reaction product FeHx will melt and then sink to form a proto-core and iron oxide will be dissolved in the Earth's mantle. The dissolution of hydrogen in the Earth's core is a natural consequence of the core-formation process.  相似文献   
67.
Night airglow of oxygen 130.4 and 135.6 nm emissions was measured by a spectrophotometer aborad an S520 sounding rocket, launched at 19:50 JST (10:50 UT) on 14 February, 1982 from Kagoshima, Japan. The altitude variation of the emissions was obtained from 110 to 266 km at zenith angles of 35.5°±4°. The emission intensity around 260 km was about 160R and is roughly compatible with model calculations taking account of O++e radiative recombination as well as O+–O mutual neutralization. Some excess of about 50R, compared to the model calculation, was observed around 200 km. Possible explanations of the excess are: (i) remnant oxygen ions during the transition period from day to night and (ii) diffuse radiation from the background sky. Model calculations taking account of remnant oxygen ions were also performed by adding an excess electron density to the original density profile. However, it was found that an unreasonably large electron density is required around 200 km (5×105 cm–3) to produce the observed intensity. It is also probable that some contribution from the background sky is present in the observed intensity.  相似文献   
68.
69.
Formation of primordial black holes (PBHs) on astrophysical mass scales is a natural consequence of inflationary cosmology, if the primordial perturbation spectrum has a large and negative running of the spectral index as observationally suggested today because double inflation is required to explain it and fluctuations on some astrophysical scales are enhanced in the field-oscillation regime in between. It is argued that PBHs thus produced can serve as intermediate-mass black holes (IMBHs), which act as the observed ultraluminous X-ray sources (ULXs) by choosing appropriate values of the model parameters in their natural ranges. Our scenario can be observationally tested in near future because the mass of PBHs is uniquely determined once we specify the values of the amplitude of the curvature perturbation, spectral index and its running on large scales.  相似文献   
70.
Toshihiro  Ike  Gregory F.  Moore  Shin'ichi  Kuramoto  Jin-Oh  Park  Yoshiyuki  Kaneda  Asahiko  Taira 《Island Arc》2008,17(3):342-357
Abstract   We documented regional and local variations in basement relief, sediment thickness, and sediment type in the Shikoku Basin, northern Philippine Sea Plate, which is subducting at the Nankai Trough. Seismic reflection data, tied with ocean drilling program drill cores, reveal that variations in the incoming sediment sequences are correlated with basement topography. We mapped the three-dimensional seismic facies distribution and measured representative seismic sequences and units. Trench-parallel seismic profiles show three regional provinces in the Shikoku Basin that are distinguished by the magnitude of basement relief and sediment thickness: Western (<200–400 m basement relief, >600 m sediment thickness), Central (>1500 m relief, ∼2000 m sediments), and Eastern (<600 m relief, ∼1200 m sediments) provinces. The total thickness of sediment in basement lows is as much as six times greater than that over basement highs. Turbidite sedimentation in the Shikoku Basin reflects basement control on deposition, leading to the local presence or absence of turbidite units deposited during the middle Oligocene to the middle Miocene. During the first phase of sedimentation, most basement lows were filled with turbidites, resulting in smooth seafloor morphology that does not reflect basement relief. A second phase of turbidite deposition in the Eastern Province was accompanied by significant amounts of hemipelagic sediments interbedded with turbidite layers compared to the other provinces because of its close proximity to the Izu–Bonin Island Arc. Both regional and local variations in basement topography and sediment thickness/type have caused lateral heterogeneities on the underthrusting plate that will, in turn, influence lateral fluid flow along the Nankai accretionary prism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号