首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   8篇
  国内免费   3篇
测绘学   3篇
大气科学   13篇
地球物理   53篇
地质学   90篇
海洋学   27篇
天文学   36篇
自然地理   2篇
  2023年   1篇
  2021年   4篇
  2020年   7篇
  2019年   8篇
  2018年   1篇
  2017年   6篇
  2016年   13篇
  2015年   4篇
  2014年   8篇
  2013年   10篇
  2012年   7篇
  2011年   12篇
  2010年   12篇
  2009年   3篇
  2008年   14篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   10篇
  2003年   5篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
排序方式: 共有224条查询结果,搜索用时 296 毫秒
181.
It has been reported that sand production, which is a simultaneous production of soil particles along with gas and water into a production well, forced to terminate the operation during the world's first offshore methane production test from hydrate-bearing sediments in the Eastern Nankai Tough. The sand production is induced by internal erosion, which is the detachment and migration of soil particles from soil skeleton due to seepage flow. The inflow of the eroded soil particles into the production well leads to damage of the production devices. In the present study, a numerical model to predict the chemo-thermo-mechanically coupled behavior including internal erosion during hydrate dissociation has been formulated based on the multiphase mixture theory. In the proposed model, the internal erosion is expressed as mass transition of soil particles from soil skeleton to the fluidized soil particles. Since the internal erosion is considered to depend on the soil particle size, mass of soil particles are divided into several groups that have different representative particle diameters, and the constitutive equations for the onset condition and the mass transition rate of the internal erosion are formulated for each group. Also, transportation of soil particles in the liquid phase is formulated for each particle size group in the proposed model. Finally, a simulation of the methane gas production from the hydrate-bearing sediment by depressurization method is presented, and the internal erosion and the dissociation behavior are discussed.  相似文献   
182.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   
183.
This article presents a new public domain tool for generalized Lagrangian particle tracking in rivers. The approach can be applied with a variety of two- and three-dimensional flow solvers. Particle advection by the flow is incorporated using flow fields from the chosen solver assuming particles follow the Reynolds-averaged flow, although some other simple passive and active particle behaviors are also treated. Turbulence effects are treated using a random walk algorithm with spatial step lengths randomly chosen from Gaussian distributions characterized by the diffusivity from the flow solver. Our work extends this concept to a general framework that is solver and coordinate system independent to allow easy comparisons between differing flow treatments. To better treat problems where detailed information is required in specific regions, the approach includes novel cloning and colligation algorithms which enhance local resolution at modest computational expense. We also provide tools for computing local concentrations and total exposure over a user-specified time interval. Several examples of predictions are provided to illustrate applications of the technique, including examination of the role of curvature-driven secondary flows, storage in lateral separation eddies, treatment of larval drift, treatment of fuel spill dispersion, river-floodplain connections, and sedimentation in floodplain ponds by tie channel connections. We also demonstrate that the model can reproduce analytically derived concentration profiles for simple diffusivities. These examples show that the Lagrangian particle tracking approach and the extensions proposed here are broadly applicable and viable for treating difficult river problems with multiple temporal and spatial scales. The examples also illustrate the utility of the cloning/colligation extensions and show how these can decrease the computational effort required on problems where high local resolution is required. Enhancement of the tools and even broader applicability can be achieved through the inclusion of multiple particle populations and particle–particle interactions.  相似文献   
184.
185.
186.
The Antarctic continent and surrounding oceans,which are cold and isolated from human activities,constitute a key region for multidisciplinary investigations.Since the early interest during the International Geophysical Year (IGY) during 1957-1958,numerous scientific studies have so far been carried out in Antarctica by different countries,which have provided important insights into Earth and environmental processes such as regional climate warming and its effect to biodiversity,changes in ice sheet and ocean circulation,ozone depletion,and origin and evolution of continents.The challenge of the next phase of Antarctic research will be to integrate all fields of science into a holistic understanding of Earth and life processes of the Antarctic region.In this thematic issue of Geoscience Frontiers,we assemble a set of scientific papers related to geomorphology,biology,molecular spectroscopy,and geology reflecting the recent research activity in the Antarctic region.  相似文献   
187.
Fifty-three samples, including brines associated with oil and natural gas reservoirs and groundwater samples from deep boreholes, were collected from the Pacific and Japan Sea coastal regions in Japan. The 129I/127I and 36Cl/Cl ratios, and stable isotopes (δD and δ18O) are compared to investigate differences related to the geotectonic settings of the two regions. The δD and δ18O data indicate that brine and groundwater from the Pacific coastal region reflect mixing of meteoric water with connate seawater in the pores of sedimentary rocks. On the other hand, brine and groundwater from the Japan Sea coastal region have been hydrothermally altered. In particular, brines associated with petroleum accumulations at Niigata and Akita showed the same isotopic characteristics as fluids found in the Kuroko deposits of the Green Tuff region in northeastern Japan. There is little difference in the 36Cl/Cl ratios in brine and groundwater from the Pacific and Japan Sea coasts. Most brine and some deep groundwater, except those from the Pleistocene Kazusa Group, have already reached the average secular equilibrium ratio of 9.9 ± 2.7 × 10−15 for their mudstone and sandstone reservoirs. There was no correlation between the 36Cl/Cl ratios and differences in geotectonic setting between the Pacific and the Japan Sea coast. The molar I/Br ratio suggests that the I in all of water samples was of biogenic origin. The average 129I/127I ratio was 290 ± 130 × 10−15 to 294 ± 105 × 10−15 in both regions, showing no relationship to the different geotectonic settings. The uncontaminated brine and groundwater samples are likely to have retained the original 129I/127I ratios of marine I released from the old organic matter stored in sedimentary rock.  相似文献   
188.
This paper describes the mobilization and speciation of As found in hydrothermally altered rock under oxic column conditions. The altered rock sample was obtained from a tunnel project located in the Nakakoshi area of Hokkaido, Japan, whose geology is represented by slate, shale and sandstone. This area has undergone silicification, pyritization and argillic alteration resulting in As-enrichment of the rock. Results of the column experiments show that the infiltration rate, bulk density and rock bed thickness affected the duration of water residence, which in turn influenced the pH of the rock–water system. Coexisting ions most notably Ca2+ at amounts greater than ca. 50 mg/L retarded the mobilization of As. Mobilization of As from the rock with time occurred in two stages: stage 1 (weeks 1–20) with higher As leaching and stage 2 (weeks 20–76) characterized by nearly constant As release. In addition, pore water As concentrations revealed that the columns developed into two regions: the top half where most of the leaching occurred and the bottom part dominated by adsorption. Thus, the mechanism controlling the mobilization of As from the rock is a combination of one or more of the following processes: dissolution of soluble As-bearing fractions, pyrite oxidation and adsorption reactions. Arsenite (As[III]) was the dominant species in the effluent at the start of the experiment in columns with shorter water residence time and lower pH conditions (<8). On the other hand, arsenate (As[V]) was the major inorganic species released from the rock at higher pH (8–9.5) and when the system was close to equilibrium. Speciation of As with depth also indicated that As[III] disappeared around the bottom half of the columns, probably as a result of adsorption and/or oxidation. Arsenic speciation is partially controlled by the pH dependent adsorption of As species. The important adsorbent phases in the rock included Fe–Al oxides/oxyhydroxides, clay minerals and organic matter, which permitted the columns to attenuate additional As loadings including As[III]. Implications of these results on the design of a novel disposal method for these altered rocks include the enhancement of As adsorption through the addition of natural or artificial adsorbents and the utilization of a covering soil with low permeability to minimize rainwater infiltration into the rock.  相似文献   
189.
The potential for flooding and sediment transport is greatly affected by river channel form and changes in land use. Therefore the modelling of channel morphology prior to canalization and of land‐use change is important with respect to the prediction of floods and sediment yield and their consequences. A combination of land‐use transformation maps and soil properties shows certain decision rules for the conversion of forest into arable or vice versa. The model proposed, from this study, was used to simulate possible past and/or future channel and land‐use patterns. Subsequently, the outcome of this simulation was used to assess the risk of flooding, sediment transport and soil‐erosion under different conditions. In this study, channel morphology prior to canalization and land‐use change in the Ishikari basin, Hokkaido, Japan, were analysed by comparing three scenarios using a physical based channel and slope model. The results indicate that pre‐canalization channel morphology has a significant impact on flood peak, but no significant effect on sediment yield. In contrast, land‐use change has a significant effect on soil eroded from hillslopes, but no significant effect on flooding for Ishikari basin. This study also illustrates the challenges that a simple model, such as a physical based channel and slope model, can simulate large‐scale river basin processes using fewer hydrological data resources. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号