全文获取类型
收费全文 | 90篇 |
免费 | 6篇 |
国内免费 | 1篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 3篇 |
地球物理 | 23篇 |
地质学 | 45篇 |
海洋学 | 9篇 |
天文学 | 11篇 |
综合类 | 1篇 |
自然地理 | 4篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 4篇 |
2016年 | 3篇 |
2015年 | 5篇 |
2014年 | 3篇 |
2013年 | 6篇 |
2012年 | 2篇 |
2011年 | 3篇 |
2010年 | 4篇 |
2009年 | 2篇 |
2008年 | 11篇 |
2007年 | 5篇 |
2006年 | 10篇 |
2005年 | 2篇 |
2004年 | 6篇 |
2003年 | 4篇 |
2002年 | 1篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1979年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有97条查询结果,搜索用时 15 毫秒
41.
42.
We present new experimental results on impact shock chemistry into icy satellites of the outer planets. Icy mixtures of pure water ice with CO2, Na2CO3, CH3OH, and CH3OH/(NH4)2SO4 at 77 K were ablated with a powerful pulsed laser—a new technique used to simulate shock processes which can occur during impacts. New products were identified by GC-MS and FTIR analyses after laser ablation. Our results show that hydrogen peroxide is formed in irradiated H2O/CO2 ices with a final concentration of 0.23%. CO and CH3OH were also detected as main products. The laser ablation of frozen H2O/Na2CO3 generates only CO and CO2 as destruction products from the salt. Pulsed irradiation of water ice containing methanol leads also to the formation of CO and CO2, generates methane and more complex molecules containing carbonyl groups like acetaldehyde, acetone, methyl formate, and a diether, dimethyl formal. The last three compounds are also produced when adding ammonium sulfate to H2O/CH3OH ice, but acetone is more abundant. The formation of two hydrocarbons, CH4 and C2H6 is observed as well as the production of three nitrogen compounds, nitrous oxide, hydrogen cyanide, and acetonitrile. 相似文献
43.
Satoru Yamamoto Ryosuke Nakamura Tsuneo Matsunaga Yoshiko Ogawa Yoshiaki Ishihara Tomokatsu Morota Naru Hirata Makiko Ohtake Takahiro Hiroi Yasuhiro Yokota Junichi Haruyama 《Icarus》2012,218(1):331-344
The distribution and the geological context of the olivine-rich exposures in the South Pole-Aitken (SPA) Basin on the Moon were investigated based on the spectral data obtained from the Spectral Profiler (SP) and Multiband Imager (MI) onboard the Japanese lunar explorer Kaguya/SELENE. The olivine-rich exposures are found only in the peak rings or central peaks of the Schrödinger basin and Zeeman crater, which are located in the outer region of the SPA Basin and not in the center region. On a localized scale, the olivine-rich materials are exposed on landslide features on the crater walls or sloped wall of the central peaks or the peak rings. Another observational finding is the co-existence of olivine-rich and plagioclase-rich materials on a kilometer scale spanning most of the olivine-rich sites in the Schrödinger basin. Pyroxene-rich materials are found in fresh craters outside the peak rings or the central peaks with olivine-rich materials. Based on these results, the following scenario are proposed: (1) the impact to form the SPA Basin melted a large amount of the lunar upper mantle and crust, and distributed the melted materials to the outer region; (2) local differentiation of melted materials hid the olivine-rich materials in the center region of the SPA Basin; (3) later impacts that formed the Schrödinger and Zeeman craters excavated and exposed the olivine-rich materials to the surface again; and (4) space weathering and regolith gardening obscured the olivine-rich spectra at the exposure sites, but recent, small scale impacts or landslides on the sloped wall exposed fresh olivine-rich materials, allowing the identification of the olivine-rich exposures by spectral remote-sensing. This suggests that several, different scale events play an important role in forming the surface distributions of originally deep-seated materials on the Moon, as well as on other planetary bodies. 相似文献
44.
Miyazawa Yasumasa Kuwano-Yoshida Akira Doi Takeshi Nishikawa Hatsumi Narazaki Tomoko Fukuoka Takuya Sato Katsufumi 《Ocean Dynamics》2019,69(2):267-282
Ocean Dynamics - We demonstrate that assimilation of water temperature measurements by sea turtles into an operational ocean nowcast/forecast system improves representation of mesoscale eddies and... 相似文献
45.
Yasuyuki Shimizu Jonathan Nelson Kattia Arnez Ferrel Kazutake Asahi Sanjay Giri Takuya Inoue Toshiki Iwasaki Chang-Lae Jang Taeun Kang Ichiro Kimura Tomoko Kyuka Jagriti Mishra Mohamed Nabi Supapap Patsinghasanee Satomi Yamaguchi 《地球表面变化过程与地形》2020,45(1):11-37
Results from computational morphodynamics modeling of coupled flow–bed–sediment systems are described for 10 applications as a review of recent advances in the field. Each of these applications is drawn from solvers included in the public-domain International River Interface Cooperative (iRIC) software package. For mesoscale river features such as bars, predictions of alternate and higher mode river bars are shown for flows with equilibrium sediment supply and for a single case of oversupplied sediment. For microscale bed features such as bedforms, computational results are shown for the development and evolution of two-dimensional bedforms using a simple closure-based two-dimensional model, for two- and three-dimensional ripples and dunes using a three-dimensional large-eddy simulation flow model coupled to a physics-based particle transport model, and for the development of bed streaks using a three-dimensional unsteady Reynolds-averaged Navier–Stokes solver with a simple sediment-transport treatment. Finally, macroscale or channel evolution treatments are used to examine the temporal development of meandering channels, a failure model for cantilevered banks, the effect of bank vegetation on channel width, the development of channel networks in tidal systems, and the evolution of bedrock channels. In all examples, computational morphodynamics results from iRIC solvers compare well to observations of natural bed morphology. For each of the three scales investigated here, brief suggestions for future work and potential research directions are offered. © 2019 The Authors Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd 相似文献
46.
Dinesh Pandit Mruganka K. Panigrahi Takeru Moriyama Shunso Ishihara 《Mineralogy and Petrology》2014,108(5):663-680
The Malanjkhand granodiorite (MG) hosting economic copper mineralization and the hitherto barren Dongargarh granitoids (DG) have subtle differences in their petrographic and bulk geochemical features. The two plutons are contiguous and occur in the northern part of the Bhandara Craton in Central India with intervening volcanosedimentary sequence of the Dongargarh Supergroup amidst older gneisses. The Dongargarh granitoids studied in two smaller units have higher bulk magnetic susceptibility than the Cu-bearing MG; the majority of samples studied from the latter being ilmenite-series rocks. DG crystallized at higher pressures compared to MG. Plagioclase composition ranges from albite to high bytownite in MG, whereas its compositional range is restricted to high andesine in DG. However, both intrusions give identical temperature ranges estimated by binary feldspar thermometry. Biotite in MG shows higher Fe/Mg ratios, as well as a greater range of compositional variation, than that in DG. MG has a moderately fractionated rare earth element distribution pattern without any significant Eu anomaly, showing depletion in mid-range rare earth elements (REE) and no depletion in heavy REE. DG is characterized by a prominent negative Eu anomaly. Geochemical features indicate subtle differences in the nature of source rocks and/or melting processes responsible for the generation of the two granitoids. MG displays more consistent bulk chemical features and is possibly a result of crystallization from a homogeneous granodioritic melt. DG displays a greater diversity and possibly incorporated a significant felsic crustal component that contributed to the parent melt. A fluid inclusion study of quartz grains from the granitoids and barren quartz veins occurring in MG indicates identical low-temperature nature of the fluid in both cases. They differ from the fluid in the mineralized zone in MG in the absence of a high-temperature component and CO2 in the fluid. Late-stage fluids in DG and associated barren quartz veins compare well with those from MG. The hydrothermal activity following the granite emplacement seems to have operated under identical temperature conditions, and the aqueous fluid at the two occurrences seems to have been broadly similar. In both cases, internal evolution of the exsolved fluid to low temperatures and moderate salinity are visualized. Based on the existing information, the lack of ore potential in DG may be attributed to the metal and volatile (water + halogens) deficient nature of the parental granitic melt. 相似文献
47.
Tsuyoshi Komiya Takafumi Hirata Kouki Kitajima Shinji Yamamoto Takazo Shibuya Yusuke Sawaki Tomoko Ishikawa Degan Shu Yong Li Jian Han 《Gondwana Research》2008,14(1-2):159
The redox state of the surface environment of the early Earth is still controversial, and a detailed and quantitative estimate is still lacking. We carried out in-situ analyses of major, trace, and rare-earth elements of carbonate minerals in rocks with primary sedimentary structures in shallow and deep sea-deposits, in order to eliminate secondary carbonate and contamination of detrital materials, and to estimate the redox condition of seawater through time. Based on the Ce content and anomalies of the carbonate minerals at given parameters of atmospheric CO2 content (pCO2) and Ca content of seawater, we calculated the oxygen contents of shallow and deep seawater, respectively. The results show that the oxygen content of the deep sea was low and constant until at least 1.9 Ga. The oxygen content of shallow seawater increased after 2.7 Ga, but fluctuated. It became quite high at 2.5 and 2.3 Ga, but eventually increased after the Phanerozoic. In addition, the calculation of a high pCO2 condition shows that seawater was more oxic even in the Archean than at present, suggesting a relatively low pCO2 through geologic time.Our detailed calculations from compositions of carbonate minerals in Three Gorge area, south China show a low oxygen content of seawater after the Snowball Earth until the late Ediacaran, an increase in the late Ediacaran, and a significant decrease around the Precambrian–Cambrian and Nemakit/Daldynian–Tommotian boundaries. These variations were possibly caused by global regression and dissolution of methane hydrates. 相似文献
48.
Abstract. There have been two primary sources for industrial indium; one from massive sulfides, while the other is dissemination-veins and skarns, related to felsic igneous rocks. The latter group of the In-bearing deposits is abundant in the Japanese Islands. Indium occurs as In-minerals such as sakuraiite, roquesite, laforetite and many unidentified minerals, but the majority is contained as an impurity in sphalerite, and tin and copper sulfides. Average grades of the ores from which indium has been extracted vary from a few ppm (e.g., Kosaka mine) to more than 300 ppm (Toyoha mine). The amount of indium in all the major basemetal deposits is estimated by analyzing representative samples. The main indium deposits are subvolcanic and tin-poly-metallic vein types. The largest one is Toyoha mine (4,700 tons hi) and the Ashio mine (ca. 1,200 tons In) was found to be the second largest. Many small occurrences, were recognized in the Miocene magnetite-series belt, besides the classic occurrences in the ilmenite-series granitic terrains of SW Japan, including the Ikuno and Akenobe tin(-tungsten) polymetallic veins, located in the northern margin of the late Cretaceous Sanyo ilmenite-series province. Magnetite-series magmas with deep source are necessary to concentrate sulfur in the magma chamber but sedimentary source rocks and their reducing agents are needed to collect and to precipitate indium. The Japanese islands are essentially accretionary terrains intruded by various deep oxidized magmas; thus forming magnetite/ilmenite-series paired belts, which are sometimes mixed. This unique geologic setting may be the most fundamental reason why indium is rich in vein-type deposits of the Japanese Island arcs. 相似文献
49.
Abstract. Various leucocratic biotite granites, low-temperature I-type, from the middle zone of the Sanyo ilmenite-series granitic terrane were studied chemically. These granites are locally associated with REE-Sn-W mineralizations, and were compared with unmineralized granites and batholithic Ryoke granites in three areas of the Chubu, Kinki and Chugoku Districts. They are unique in the region because they have extremely low ferromagnesian components but high Rb/Sr and 10000Ga/Al ratios. These granites are divided petrographically into the main phase, finer-grained marginal phase and younger sheets and dikelets. These rocks have increasing of HREE+Y and Nb+Ta contents in this order, which is also followed by decreasing zircon saturation temperature from 780 to 725C. Together with the mode of occurrence of these granites, the leucogranitic magmas are considered to have formed by in-situ fractionation of the host granitic magmas near the top of the magma chambers. The concentration of HREE, Y, Nb and Ta in these Sanyo Belt leucogranites is principally controlled by magmatic fractionation. 相似文献
50.
We present results from a detailed analysis of seismic and infrasonic data recorded over a four day period prior to the Vulcanian eruptive event at Sakurajima volcano on May 19, 1998. Nearly one hundred seismic and infrasonic events were recorded on at least one of the nine seismic–infrasonic stations located within 3 km of the crater. Four unique seismic event types are recognized based on the spectral features of seismograms, including weak seismic tremor characterized by a 5–6 Hz peak mode that later shifted to 4–5 Hz. Long-period events are characterized by a short-duration, wide spectral band signal with an emergent, high-frequency onset followed by a wave coda lasting 15–20 s and a fundamental mode of 4.2–4.4 Hz. Values of Q for long-period events range between 10 and 22 suggesting that a gas-rich fluid was involved. Explosive events are the third seismic type, characterized by a narrow spectral band signal with an impulsive high-frequency onset followed by a 20–30 second wave coda and a peak mode of 4.0–4.4 Hz. Volcano-tectonic earthquakes are the fourth seismic type. Prior to May 19, 1998, only the tremor and explosion seismic events are found to have an infrasonic component. Like seismic tremor, infrasonic tremor is typically observed as a weak background signal. Explosive infrasonic events were recorded 10–15 s after the explosive seismic events and with audible explosions prior to May 19. On May 19, high-frequency impulsive infrasonic events occurred sporadically and as swarms within hours of the eruption. These infrasonic events are observed to be coincident with swarms of long-period seismic events. Video coverage during the seismic–infrasonic experiment recorded intermittent releases of gases and ash during times when seismic and acoustic events were recorded. The sequence of seismic and infrasonic events is interpreted as representing a gas-rich fluid moving through a series of cracks and conduits beneath the active summit crater. 相似文献