首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   14篇
  国内免费   4篇
测绘学   7篇
大气科学   43篇
地球物理   127篇
地质学   115篇
海洋学   82篇
天文学   128篇
综合类   2篇
自然地理   16篇
  2023年   2篇
  2021年   10篇
  2020年   9篇
  2019年   17篇
  2018年   3篇
  2017年   13篇
  2016年   12篇
  2015年   10篇
  2014年   33篇
  2013年   17篇
  2012年   20篇
  2011年   16篇
  2010年   29篇
  2009年   28篇
  2008年   31篇
  2007年   20篇
  2006年   30篇
  2005年   18篇
  2004年   14篇
  2003年   11篇
  2002年   18篇
  2001年   13篇
  2000年   10篇
  1999年   10篇
  1998年   10篇
  1997年   9篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   9篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1977年   6篇
  1975年   2篇
  1974年   4篇
  1973年   5篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1963年   1篇
排序方式: 共有520条查询结果,搜索用时 265 毫秒
511.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
512.
Experiments using laser-heated diamond anvil cells combined with synchrotron X-ray diffraction and SEM–EDS chemical analyses have confirmed the existence of a complete solid solution in the MgSiO3–MnSiO3 perovskite system at high pressure and high temperature. The (Mg, Mn)SiO3 perovskite produced is orthorhombic, and a linear relationship between the unit cell parameters of this perovskite and the proportion of MnSiO3 components incorporated seems to obey Vegard’s rule at about 50 GPa. The orthorhombic distortion, judged from the axial ratios of a/b and \( \sqrt{2}\,a/c, \) monotonically decreases from MgSiO3 to MnSiO3 perovskite at about 50 GPa. The orthorhombic distortion in (Mg0.5, Mn0.5)SiO3 perovskite is almost unchanged with increasing pressure from 30 to 50 GPa. On the other hand, that distortion in (Mg0.9, Mn0.1)SiO3 perovskite increases with pressure. (Mg, Mn)SiO3 perovskite incorporating less than 10 mol% of MnSiO3 component is quenchable. A value of the bulk modulus of 256(2) GPa with a fixed first pressure derivative of four is obtained for (Mg0.9, Mn0.1)SiO3. MnSiO3 is the first chemical component confirmed to form a complete solid solution with MgSiO3 perovskite at the PT conditions present in the lower mantle.  相似文献   
513.
Assessing factors that influence groundwater levels such as land use and pumping strategy, is essential to adequately manage groundwater resources. A transient numerical model for groundwater flow with infiltration was developed for the Tedori River alluvial fan (140 km2), Japan. The main water input into the groundwater body in this area is irrigation water, which is significantly influenced by land use, namely paddy and upland fields. The proposed model consists of two models, a one-dimensional (1-D) unsaturated-zone water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Numerical simulation of groundwater flow from October 1975 to November 2009 was performed to validate the model. Simulation revealed seasonal groundwater level fluctuations, affected by paddy irrigation management. However, computational accuracy was limited by the spatiotemporal data resolution of the groundwater use. Both annual groundwater levels and recharge during the irrigation periods from 1975 to 2009 showed long-term decreasing trends. With the decline in rice-planted paddy field area, groundwater recharge cumulatively decreased to 61 % of the peak in 1977. A paddy-upland crop-rotation system could decrease groundwater recharge to 73–98 % relative to no crop rotation.  相似文献   
514.
An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al2O3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.  相似文献   
515.
Air entrainment in fragmented magmas controls the dynamics of volcanic eruptions. Pyroclast oxidation kinetics may be applied to quantify the degree of magma–air interaction. Pyrrhotite (Po) in volcanic rocks is often oxidized to form magnetite (Mt) and hematite (Hm), and its reaction mechanisms are well constrained. To test utilizing Po oxidation as a marker for magma–air interactions, we compared the occurrence of Po oxidation products from three different eruption styles during the Sakurajima 1914–1915 eruption. Pumices from the Plinian eruption include columnar-type Fe oxides (Mt with subordinate width of Hm) often accompanied by relict Po. This columnar type is also found in clastogenic lava, where it is almost completely oxidized to Hm. The effusive lava contains framboidal aggregates of subhedral to anhedral Mt crystals without Hm. The formation mechanisms of columnar and framboidal Fe oxides were estimated. The columnar type Fe oxides were formed syn-eruptively through gaseous reactions, as opposed to the melt in a magma chamber, as demonstrated by the Ti-free nature of the columnar Mt and its synchronous oxidation to Hm. By contrast, the framboidal type was formed in a melt with decreasing fS2. The calculation of Hm growth in a conductively cooling pumice clast constrains the surface temperature of pumice in the eruption column. The paragenesis and oxidation degree of Po and Fe oxides are consistent with the eruption processes in terms of magma fragmentation, air entrainment, and welding, and can, therefore, be a responsive marker for the magma–air interaction.  相似文献   
516.
The paper presents new data on the isotopic age and chemical composition of volcanic rocks from the Tytyl’veem and Mangazeika basins of western Chukotka superposed on Mesozoides of the Verkhoyansk–Chukotka Tectonic Region. The results of SIMS U–Pb zircon dating (121.4 ± 2.8 and 118.0 ± 2.0 Ma) corroborate the Aptian age of the Tytyl’veem Formation. This age, in turn, indicates its formation after closure of the South Anyui ocean (Neocomian), but before origination of the Okhotsk–Chukotka Belt (Albian–Campanian). Post-collisional Aptian igneous rocks are widespread in the northern Verkhoyansk–Chukotka Tectonic Region; the legth of the corresponding igneous province is no less than 1400 km. In geochemical characteristics, the post-collisional volcanic rocks occurring in Western Chukotka are similar with the rocks from Andean-type igneous belts.  相似文献   
517.
518.
While widely known for their destructive power, typhoon events can also bring benefit to coral reef ecosystems through typhoon-induced cooling which can mitigate against thermally stressful conditions causing coral bleaching. Sensor deployments in Sekisei Lagoon, Japan’s largest coral reef area, during the summer months of 2013, 2014, and 2015 were able to capture local hydrodynamic features of numerous typhoon passages. In particular, typhoons 2015-13 and 2015-15 featured steep drops in near-bottom temperature of 5 °C or more in the north and south sides of Sekisei Lagoon, respectively, indicating local cooling patterns which appeared to depend on the track and intensity of the passing typhoon. This was further investigated using Regional Ocean Modeling System (ROMS) numerical simulations conducted for the summer of 2015. The modeling results showed a cooling trend to the north of the Yaeyama Islands during the passage of typhoon 2015-13, and a cooling trend that moved clockwise from north to south of the islands during the passage of typhoon 2015-15. These local cooling events may have been initiated by the Yaeyama Islands acting as an obstacle to a strong typhoon-generated flow which was modulated and led to prominent cooling of waters on the leeward sides. These lower temperature waters from offshore may then be transported to the shallower inner parts of the lagoon area, which may partly be due to density-driven currents generated by the offshore-inner area temperature difference.  相似文献   
519.
Ocean Dynamics - Although the different aspects of wave-mud interaction have been studied by many researchers, few studies have been conducted on the effect of solitary wave on the particle...  相似文献   
520.
We describe a fragmented cryptocrystalline chondrule consisting solely of forsterite (Fo98) in the Murchison CM2 chondrite, with a peculiar porous texture of enigmatic origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号