首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   10篇
  国内免费   4篇
测绘学   7篇
大气科学   43篇
地球物理   127篇
地质学   116篇
海洋学   82篇
天文学   128篇
综合类   2篇
自然地理   16篇
  2023年   2篇
  2021年   10篇
  2020年   9篇
  2019年   17篇
  2018年   3篇
  2017年   13篇
  2016年   12篇
  2015年   10篇
  2014年   33篇
  2013年   17篇
  2012年   20篇
  2011年   16篇
  2010年   29篇
  2009年   28篇
  2008年   31篇
  2007年   20篇
  2006年   30篇
  2005年   18篇
  2004年   15篇
  2003年   11篇
  2002年   18篇
  2001年   13篇
  2000年   10篇
  1999年   10篇
  1998年   10篇
  1997年   9篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   9篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1977年   6篇
  1975年   2篇
  1974年   4篇
  1973年   5篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1963年   1篇
排序方式: 共有521条查询结果,搜索用时 15 毫秒
311.
The replenishment and persistence of marine species is contingent on dispersing larvae locating suitable habitat and surviving to a reproductive stage. Pelagic larvae rely on environmental cues to make behavioural decisions with chemical information being important for habitat selection at settlement. We explored the sensory world of crustaceans and fishes focusing on the impact anthropogenic alterations (ocean acidification, red soil, pesticide) have on conspecific chemical signals used by larvae for habitat selection. Crustacean (Stenopus hispidus) and fish (Chromis viridis) larvae recognized their conspecifics via chemical signals under control conditions. In the presence of acidified water, red soil or pesticide, the ability of larvae to chemically recognize conspecific cues was altered. Our study highlights that recruitment potential on coral reefs may decrease due to anthropogenic stressors. If so, populations of fishes and crustaceans will continue their rapid decline; larval recruitment will not replace and sustain the adult populations on degraded reefs.  相似文献   
312.
Stable isotope ratios of S, O and Sr have been measured for active vent materials which were first found and sampled in April 1987 from the Mariana backarc spreading axis at 18°N. Chimneys consisted mostly of barite with a lesser proportion of sulfide minerals such as sphalerite, galena, chalcopyrite and pyrite. Theδ34S values of sphalerite and galena taken from several chimneys and various parts of a chimney showed a narrow range from 2.1 to 3.1‰, suggesting uniform conditions of fluid chemistry during chimney growth. The sulfur isotopic results imply a contribution of hydrogen sulfide reduced from seawater sulfate in the deep hydrothermal reaction zone, considering that fresh glasses of the Mariana Trough basalts haveδ34S= −0.6 ± 0.3‰. Sulfur isotopic compositions of hydrogen sulfide in the high temperature vent fluids (δ34S= 3.6–4.8‰) which are higher than those of the sulfide minerals suggest the secondary addition of hydrogen sulfide partially reduced from entrained seawater SO42− at a basal part of the chimneys. This interpretation is consistent with theδ34S values of barite (21–22‰) that are higher than those of seawater sulfate. The residence time of the entrained SO42− was an order of an hour on a basis of oxygen isotopic disequilibrium of barite. Strontium isotopic variations of barite and vent waters indicated that Sr in barite was mostly derived from the Mariana Trough basalts with a slight contribution from Sr in circulating sea-water, and that 10–20% mixing of seawater with ascending hydrothermal fluids induced precipitation of barite at the sea-floor.  相似文献   
313.
The relationship between permeability and vesicularity in volcanic rocks has been used to infer the degassing behavior of hydrous magma. Recent data on natural samples from various eruptions show a wide variation, fitting a power–law relationship of the percolation models with low (< 30%) critical vesicularity (ФC). In this study, we present data on permeability and pore-connectivity of juvenile rhyolitic pumice clasts in a pyroclastic flow around Onikobe volcano, NE Japan, and investigate their relationship with vesicularity developed in a single eruption event. The permeability of the pumices having a relatively low abundance of microlites and microphenocrysts shows a trend increasing by 4 orders of magnitude (from 10− 13.8 to 10− 10.1 m2) in a high and narrow vesicularity range (from 72 to 80%). This trend intersects at a high angle with the fit to the permeability–vesicularity data in the previous studies that has a low ФC, and is located on the extension of the trend for the products of isotropic decompression experiments. The two-dimensional (2D) connectivities of pores for the pumices were also measured from thin sections. From the point of view of percolation theory, connectivity provides information about the probability of percolation. They showed a steep increase from ca. 0 to 0.7 in an almost similar vesicularity range, as compared to their permeabilities. We attribute the increase in 2D connectivity to the increasing amount of ruptured bubble walls, which might have provided less-tortuous paths through larger apertures for gas flow. This, in turn, would cause an effective increase in the permeability. Aggregates of bubble-wall-shaped glass shards were found in the pumices, and their amount and degree of welding are higher in the pumices that have a higher abundance of microlites and microphenocrysts. These pumices have relatively high permeability and 2D connectivity at low vesicularity, which is accounted for by the existence of large irregularly shaped pores. These textural characteristics suggest that a series of partial fragmentation processes, including local rupturing of bubble walls and subsequent foam-collapse with permeable gas flow, might have occurred before the ultimate bulk fragmentation, thus resulting in the increase in permeability. We suggest that the 2D connectivity of pores is a useful parameter to quantify the degree of fragmentation of bubble walls and has the potential for use to assess their permeability.  相似文献   
314.
Strong ground motions recorded in central Tokyo during the 1944 Tonankai Mw8.1 earthquake occurring in the Nankai Trough demonstrate significant developments of very large (>10 cm) and prolonged (>10 min) shaking of long-period (T > 10–12 s) ground motions in the basin of Tokyo located over 400 km from the epicenter. In order to understand the process by which such long-period ground motions developed in central Tokyo and to mitigate possible future disasters arising from large earthquakes in the Nankai Trough, we analyzed waveform data from a dense nation wide strong-motion network (K-NET and KiK-net) deployed across Japan for the recent SE Off-Kii Peninsula (Mw 7.4) earthquake of 5 September 2004 that occurred in the Nankai Trough. The observational data and a corresponding computer simulation for the earthquake clearly demonstrate that such long-period ground motion is primarily developed as the wave propagating along the Nankai Trough due to the amplification and directional guidance of long-period surface waves within a thick sedimentary layer overlaid upon the shallowly descending Philippine Sea Plate below the Japanese Island. Then the significant resonance of the seismic waves within the thick cover of sedimentary rocks of the Kanto Basin developed large and prolonged long-period motions in the center of Tokyo. The simulation results and observed seismograms are in good agreement in terms of the main features of the long-period ground motions. Accordingly, we consider that the simulation model is capable of predicting the long-period ground motions that are expected to occur during future Nankai Trough M 8 earthquakes.  相似文献   
315.
The energy transmitting boundary used in programs such as FLUSH and ALUSH is a very accurate and useful technique for the earthquake response analysis of soil–structure interaction systems. However, it is applicable only to linear analyses or equivalent linear analyses, because it can be calculated only in the frequency domain. The author has proposed methods for transforming frequency-dependent impedance into the time domain. In this paper, an earthquake response analysis method for a soil–structure interaction system, using the energy transmitting boundary in the time domain, is proposed. First, the transform of the transmitting boundary matrices to the time domain using the methods proposed by the author is studied. Then, linear and nonlinear time history earthquake response analyses using the boundary are performed. Through these studies, the validity and efficiency of the proposed methods are confirmed.  相似文献   
316.
Grain growth experiments in dunite, clinopyroxenite, and wehrlites with various forsterite/diopside ratios were performed to investigate the effect of modal composition on grain growth kinetics in the Earth's uppermost mantle. The experiments were conducted using a piston-cylinder apparatus at 1200 °C and 1.2 GPa for 2-763 h under dry conditions. Normal grain growth (NGG) occurred in dunite, clinopyroxenite, and relatively forsterite-poor wehrlites (≤70 vol.% of forsterite). Grain growth rates of forsterite and diopside in relatively forsterite-poor wehrlites were much slower than those in dunite and clinopyroxenite. In the forsterite-rich wehrlites (≥80 vol.% of forsterite), NGG of diopside and abnormal grain growth (AGG) of forsterite occurred. The growth rate of diopside was significantly slower than that in clinopyroxenite, while the growth rate of forsterite by AGG was found to be similar to that by NGG in dunite. The presence of ≤20 vol.% diopside had the effect of inhibiting the forsterite grain growth during the initial stage, resulting in AGG of forsterite, thus overtaking the growth rate in dunite. Our experimental results suggest that there would be a significant difference in grain growth rate and consequently in effective viscosity between olivine-rich peridotites (depleted mantle) and relatively olivine-poor peridotites (fertile mantle) in the case of grain size-sensitive creep. Variation of mean grain sizes in the upper mantle would result not only from differences in temperature and phase assemblage, but also from the variation of modal compositions.  相似文献   
317.
Treatment of aromatic ring compounds, 2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichloro-phenoxy acetic acid (2,4,5-T), and bisphenol A, in the artificial seawater, i.e. Allen seawater, was carried out by ozonation and titanium dioxide (TiO2) photocatalyst treatment. Each compound was degraded and varnished within 30 min by only ozonolysis at pH 9.0 and at 20 degrees C, while the TOC value of each compound decreased gradually but reached almost constant value, i.e. about 70-80% of the initial value, at even 30 min of ozonation time. Ozonolysis (30 min of ozonation time) followed by TiO2 photocatalyst treatment (50h of reaction time) was a very effective method for decreasing the TOC values of aromatic ring compounds in the artificial seawater. In consequence, TOC values of 2,4-D, 2,4,5-T, and bisphenol A could be reduced to about 28, 21, and 34% of their initial values, respectively.  相似文献   
318.
Structural changes induced by thermal maturation of dispersed organic matter (OM) in the Shimanto accretionary complex, southwest Japan, were investigated using micro‐Fourier‐transform infrared spectroscopy and micro‐Raman spectroscopy. Natural dispersed OM exhibits systematic structural changes inferred from D1‐ and G‐band FWHM values, Raman band separation (RBS), and intensity ratios of the D1‐ and G‐bands (ID1/IG ratio) from diagenetic zone to anchizone (IC values: 0.75–0.30). Infrared spectra indicate a loss of aliphatic CH x, aromatic CH x, and oxygen‐containing structures as temperature increases. These changes are consistent with discontinuities in thermal structures bounded by out‐of‐sequence thrusts. Kinetic pyrolysis experiments indicate that the ID1/IG ratio of synthesized OM has a power law relationship with heat treatment time. Kinetic models of temperature dependence were fitted using the ID1/IG ratio, and an effective activation energy of 106 ±17 kJ/mol was estimated using an Arrhenius equation. The activation energies estimated by power law rate and Avrami models have a least‐square correlation coefficient of 0.93, indicating the temperature dependence of carbonization. The estimated effective activation energy is consistent with that of coal, lignin, cellulose, and hemicellulose during thermal degradation. On the other hand, RBS, and D1‐ and G‐band FWHM values of OM display more complex changes with increasing heating temperature and time, and it is difficult to constrain rate parameters during pyrolysis experiments. Our data indicate that the ID1/IG ratio is controlled by a simple thermally activated process, whereas RBS and D1‐ and G‐band FWHM values can be affected by lithostatic pressure, fluid activity, hydrogen index, and host lithology, as well as temperature. Structural evolution of dispersed OM in mudstones differs between natural and anhydrous closed experimental systems. Natural carbonization based on micro‐Raman spectroscopy should be applied for a limited indicator of thermal maturation, especially for dispersed OM in diagenetic zone.  相似文献   
319.
To investigate the source, flow paths, and chemistry of rich resources of high‐quality, shallow groundwater in the alluvial fan between the Tedori and Sai rivers in central Japan, we analysed stable isotope ratios of H, O, and Sr and concentrations of major dissolved ions and trace elements in groundwater, river water, and paddy water. The 87Sr/86Sr ratios of the groundwater are related to near‐surface geology: groundwater in sediment from the Tedori River has high 87Sr/86Sr ratios (>0.711), whereas that from the Sai River in the north of the fan has low 87Sr/86Sr ratios (<0.711). δ2H and δ18O values and 87Sr/86Sr ratios indicate that groundwater in the central and southern fans is recharged by the Tedori River, whereas recharge in the north is from the Sai River. Mg2+, Ca2+, Sr2+, HCO3?, and SO42? concentrations and δ2H and δ18O values in the groundwater are high in the central fan and, except for the northern area, tend to increase with distance from the Tedori River. There are linear relationships between 87Sr/86Sr ratio and the reciprocal concentrations of Sr2+, Mg2+, and Ca2+. These geochemical characteristics suggest that as groundwater recharged from the Tedori River flows towards the central fan, it mixes with waters derived from precipitation and paddy water that have become enriched in these components during downward infiltration. These results are consistent with our hydrological analysis and numerical simulation of groundwater flow, thus verifying the validity of the model we used in our simulation of groundwater flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
320.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号