首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   11篇
  国内免费   1篇
大气科学   2篇
地球物理   46篇
地质学   54篇
海洋学   31篇
天文学   27篇
自然地理   7篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   7篇
  2012年   4篇
  2011年   4篇
  2010年   8篇
  2009年   7篇
  2008年   5篇
  2007年   8篇
  2006年   9篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   4篇
  2001年   7篇
  2000年   7篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   2篇
  1993年   5篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1963年   1篇
排序方式: 共有167条查询结果,搜索用时 484 毫秒
101.
Using the 160‐m‐long flume at Tsukuba University we undertook an experiment to provide a first estimate of the virtual velocity of sand in the size range 0.5–2.0 mm. For the flow velocity used in our experiment this sediment‐size range would conventionally be regarded as suspended sediment. The virtual velocity was found to be 37–41% of the flow velocity. Paradoxically, virtual velocity decreases as particle size decreases. Such a lower virtual velocity of finer sediment is not inconceivable. First, trapping of the sediment appears to be a function of bed roughness, and there is a probable relationship between bed roughness and trapping efficiency for particles of different sizes. Second, finer particles are more likely to find sheltered positions on a rough bed and thus experience lower mobility, relative to the more exposed coarser grains, as observed for bedload transport. Third, the virtual velocity of particles undergoing bedload transport has been found, in some instances, to be lower for finer clasts. We combine our data with previous studies of virtual velocity of bedload to develop, for the first time, a hypothesis for a holistic analysis of sediment movement in rivers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
102.
Field observations were conducted to examine the processes governing the phytoplankton distribution and photosynthetic activity in and around a tidal front formed in Iyo Nada, the Seto Inland Sea, Japan. The existence of a middle layer intrusion, which, it has been suggested, moves from the mixed region to the stratified region of the tidal front, was ascertained by the phytoplankton distribution in addition to a T-S diagram. Skeletonema costatum, which originally inhabited the mixed region, was used as the indicator to reveal the intrusion. However, the tip of water containing the S. costatum population did not extend deeply into the stratified region. The velocity of the intrusion seemed to be slow enough to make biological processes, such as nutrient uptake by phytoplankton and subsequent growth, as well as the decrease in cell density due to zooplankton grazing, dominate during the transportation. The patchy distribution of copepod nauplii implied that grazing has an influence on the distribution pattern of phytoplankton. The location of high photosynthetic activity did not coincide spatially with the center of high phytoplankton biomass, suggesting the importance of these biological processes. Therefore, it is considered that the middle layer intrusion plays a role as an inducer of subsequent biological processes at the tidal front by not only supplying nutrients from the mixed region but also by increasing the vertical diffusivity.  相似文献   
103.
The Role of Suspended Oyster Culture on Nitrogen Cycle in Hiroshima Bay   总被引:1,自引:0,他引:1  
The predominance of bivalves affects the cycle of materials in the coastal ecosystem. In the present study, the role of suspended oyster culture on the nitrogen cycle was demonstrated for the northern Hiroshima Bay. The nitrogen cycle was considered as two systems, (1) the primary production (PP) system and (2) the oyster culture (OC) system. The results show that about 26% of N productivity was supplied to process by cultured oysters in the OC system. This process varies seasonally due to the seasonal variations of PON, physiological activities and biomass of oysters. The N processing rates were found to be high in summer and low in winter. The biodeposition and excretion of N in the OC system are 3.0 and 2.1 ton N d–1, while the natural sedimentation rate and N regeneration in the PP system are 8.3 and 18.0 ton N d–1, which indicates that the PP system is a major system regenerating N in the water column. The release of total dissolved N from the bottom to the water column is about 8.3 ton N d–1. The amount of N harvested as oyster product was about 1.3 ton N d–1, which is about 10% of daily N loading in north Hiroshima Bay. According to the N cycle developed in the present study, the results suggest the significant role of suspended oyster culture on the nitrogen cycle in Hiroshima Bay. In addition, our results indicate that oyster production was efficiently harvested, suggesting that oyster culture could probably be used as a tool to remove N from Hiroshima Bay.  相似文献   
104.
Numerical analysis of effects of tidal variations on storm surges and waves   总被引:2,自引:0,他引:2  
This study examines the effects of tides on surges, wave setups and waves, in terms of tidal amplitudes and phases, by using a coupled numerical model of Surge, WAve and Tide (called as SuWAT). The SuWAT model, composed of depth integrated nonlinear shallow water equations and Simulating WAves Nearshore (SWAN) model, is able to simultaneously run with an arbitrary number of nested domains by using the Message Passing Interface. The results for an idealized case indicate that surge and wave setup are increased in the phase of low water and decreased in the high water phase; on the other hand, waves change in a reverse manner. Such changes are enhanced by large tidal variations. The conventional method (e.g., surge plus tide independently) has the possibility of overestimation for the total water level. The hindcast results for Typhoon Ewiniar in 2006 show that the run with tides is more accurate 10% than that without tides in coastal areas of Korea. The nested scheme improves the accuracy up to 40% for the prediction of water levels in the simulations. It is shown that the present coupled model, SuWAT, is capable of predicting both water levels and waves under storm events with reasonable accuracy against the observations.  相似文献   
105.
Late Quaternary foraminifera assemblages have been examined in two sediment cores (MD179‐3296 and MD179‐3317) from cold seep areas in the eastern margin of the Japan Sea, off Joetsu, Niigata Prefecture. Foraminifera assemblages in core MD179‐3296, which was located at the center of a pockmark on the Umitake Spur, show no evidence of methane flux and, especially in its upper portion, share the same paleo‐environmental history as other free gas hydrate areas of the Japan Sea. In comparison, in the core MD179‐3317 at the center of a pockmark at Joetsu Knoll, foraminiferal distributions were strongly affected by methane activities and, in the main part of the core, were deposited under local conditions. Three horizons were identified in this core, which are characterized by the high abundance value of Thalmannammina parkerae and might be related to methane flux due to sea level fall especially through late marine isotope stage (MIS) 3 and MIS 2.  相似文献   
106.
It has become increasingly obvious over the past two decades that the fossiliferous strata at Fort Ternan, Kenya, are probably somewhat younger than 14 Ma, an age which has long been attached to the deposits. This realisation flows from geological and biochronological observations. In order to test the hypothesis, resampling of all the lava flows in the region of Fort Ternan was undertaken in 2003, especially those underlying the Fort Ternan Beds in the Kipchorion Gorge where the sequence is the most complete. Samples obtained from lava flows underlying and overlying the fossil beds were analysed for anorthoclase K/Ar and 40Ar/39Ar and biotite 40Ar/39Ar age determinations. The results reveal that the age of the fossiliferous sediments is ca 13.7±0.3Ma. Since Fort Ternan yielded the ‘core fauna’ that defines Faunal Set IV of the East African biochronological sequence this refinement of its age will impact on age estimates of neighbouring Faunal Sets, as well as on other faunas correlated to Fort Ternan, including those in Europe belonging to MN Zones MN 5, MN 6 and MN 7/8. To cite this article: M. Pickford et al., C. R. Geoscience 338 (2006).  相似文献   
107.
We have prepared a HF-HCl residue and its oxidized residue of the Allende meteorite and have measured the elemental concentrations and the isotopic compositions of noble gases. In the HF-HCl reside, noble gases are enriched in colloidal fraction compared to the non-colloidal fraction by a factor of 2-4. The heavy noble gases were evidently lost after the oxidization, indicating that phase Q (carrier of planetary heavy noble gases) was removed by the oxidation. The Raman spectroscopic parameters show that the colloidal fraction of the HF-HCl residue is more amorphous compared to the non-colloidal fraction. As the ion irradiation converts carbon into a more amorphous form, our result indicates that the “plasma model” is more plausible than the “labyrinth model” as the origin of phase Q. TEM (Transmission Electron Microscope) observations also show such a trace of ion irradiation. While the TEM observations did not show any large difference between the HF-HCl residue and its oxidized residue, the Raman spectroscopic parameters changed discretely resulting from the oxidization. This observation indicates that the oxidization not only dissolved and removed oxidized carbon, but also changed the carbon structure itself to a more amorphous (disordered) state. The Raman spectroscopic results indicate the possibility that release of Q-gas during oxidation is not accompanied by mass loss and that the release of Q-gas simply resulted from rearrangement of carbon structure during oxidation.  相似文献   
108.
To deeply understand the cracking mechanical behavior of brittle rock materials, numerical simulations of a rock specimen containing a single preexisting crack were carried out by the expanded distinct element method (EDEM). Based on the analysis of crack tips and a comparison between stress- and strain-based methods, the strain strength criterion was adopted in the numerical models to simulate the crack initiation and propagation processes under uniaxial and biaxial compression. The simulation results indicated that the crack inclination angle and confining pressure had a great influence on the tensile and shear properties, peak strength, and failure behaviors, which also showed a good agreement with the experimental results. If the specimen was under uniaxial compression, it was found that the initiation stress and peak strength first decreased and then increased with an increasing inclination angle α. Regardless of the size of α, tensile cracks initiated prior to shear cracks. If α was small (such as α ≤ 30°), the tensile cracks dominated the specimen failure, the wing cracks propagated towards the direction of uniaxial compression, and the propagation of shear cracks was inhibited by the high concentration of tensile stress. In contrast, if α was large (such as α ≥ 45°), mixed cracks dominated the specimen failure, and the external loading favored the further propagation of shear cracks. Analyzing the numerical results of the specimen with a 45° inclination angle under biaxial compression, it was revealed that lateral confinement had a significant influence on the initiation sequence and the mechanical properties of new cracks.  相似文献   
109.
Field surveys on atmospheric deposition and stream water chemistry were conducted in an evergreen forest in northeastern Thailand characterized by a tropical savanna climate with distinct dry and wet seasons. Atmospheric deposition of ion constituents by throughfall and stemflow was shown to increase in the beginning and end of the wet season, reflecting the precipitation pattern. The pH and electrical conductivity of stream water increased with alkalinity and base cation concentrations due to mineralization of organic matter by the first rain and retention of anions in soil during the start of the wet season. After initial alkalinization, the pH and alkalinity declined rapidly with the highest SO42? concentration displayed in the middle towards the end of the wet season. The magnitude of peaks in SO42? concentration (13.5–60.6 μmolc/L) reflects deposition during the first 2 months of the wet season (March and April) in respective years (60.8–170 molc/ha). Release of SO42? with H+, which is retained in soil during the early wet season, may cause acidification later in the season. The deposition and concentration of SO42? declined over 6 years. However, the pH of stream water declined with increasing concentrations of SO42? and other major ions. The release of materials accumulated in the ecosystem was facilitated by the decrease in SO42? concentration/deposition and increased precipitation in the middle–late wet season. The retention‐release cycle of SO42? largely contributed to both seasonal and interannual variations in stream water chemistry in the tropical savanna climate studied.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号