首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
地球物理   1篇
地质学   21篇
天文学   9篇
自然地理   5篇
  2023年   1篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1998年   2篇
  1995年   1篇
  1993年   4篇
排序方式: 共有36条查询结果,搜索用时 0 毫秒
31.
Regional geochronological studies indicate that mid-Cretaceous plutonism (the Hohonu Suite at 110 Ma) in the Hohonu Batholith, Western Province of New Zealand, occurred during a period of rapid tectonic change in the SW Pacific portion of Gondwana. The 30–40 m.y. preceding Hohonu Suite magmatism were dominated by the subduction-related plutonism of the Median Tectonic Zone volcanic arc. Between 125–118 Ma there was a major collisional event, inferred to be the result of collision between the Median Tectonic Zone and the Western Province. This collision resulted in melting of the Median Tectonic Zone arc underplate and generation of a distinctive suite of alkali-calcic granitoids, termed the Separation Point Suite. At 110 Ma there was another pulse of magmatism, restricted to the Buller terrane of the Western Province, and including the Hohonu Suite granitoids. This was followed almost immediately by extension, culminating in the opening of the Tasman Sea some 30 m.y. later. The Hohonu Suite granitoids overlap temporally with the last vestiges of collisional Separation Point magmas and the onset of crustal extension in the Western Province, and thus represent magmatism in a post-collisional setting. Hohonu Suite magmas are typically calc-alkaline, but retain a chemical signature which suggests that the earlier Separation Point Suite magmas and/or sources were involved in Hohonu Suite petrogenesis. A model is proposed in which rapid isothermal uplift, resulting from the post-collisional collapse of continental crust previously thickened during the Median Tectonic Zone collision, caused melting of lower continental crust to generate the Hohonu Suite granitoids. In this example, granitoid composition is a consequence of the composition of the source rocks and the conditions present during melting, and no geochemical signature indicative of the tectonic setting during magmatism is present.  相似文献   
32.
Geochemical studies on the Hohonu Batholith, of the West Coast, South Island, New Zealand, have recognised two distinct but chemically related suites of mid-Cretaceous granitoids. The suites are characterised by restricted radiogenic isotopic compositions (Sr(i) = 0.7062 to 0.7085; ɛNd(i) = −4.4 to −6.1), and represent melting of a mafic lithosphere source followed by interaction with Ordovician metasediments. The two suites (Te Kinga Suite and Deutgam Suite) are distinguished by contrasting contents of Al2O3, Na2O, Sr, Ba, Eu and HREE, attributable to different residual asssemblages controlled by differing H2O contents during melting of a metabasaltic source. The relatively mafic, metaluminous, I-type Deutgam Suite represents magmas derived by dehydration melting in equilibrium with an amphibolitic (plagioclase + amphibole) residue. In contrast, the peraluminous, high silica compositions of the Te Kinga Suite were produced by melting at higher H2O contents, reducing the stability of plagioclase and resulting in a melt in equilibrium with a plagioclase-free eclogitic (garnet + amphibole) residue. Residual plagioclase during generation of the Deutgam Suite resulted in lower Al2O3, Na2O, Sr, Ba and Eu contents, whereas residual garnet during generation of the Te Kinga suite resulted in depleted HREE contents. The mid-Cretaceous granitoids of the Hohonu Batholith were generated during a period of rapid tectonic transition from crustal thickening during collision to crustal thinning and core complex formation during extension. Received: 23 July 1996 / Accepted: 21 August 1997  相似文献   
33.
We present new compositional data on a suite of historic lava flows from the Reykjanes Peninsula, Iceland. They were erupted over a short time period between c. 940 and c. 1340 ad and provide a snap-shot view of melt generation and evolution processes beneath this onshore, 65 km long, ridge segment. The lavas are tholeiitic basalts (MgO 6.5–9.2 wt%) and sparsely (≪5%) olivine and/or plagioclase phyric (±trace clinopyroxene). Individual eruptive events show remarkable compositional homogeneity. Despite a limited variation in Sr–Nd isotope compositions, high-precision double-spike Pb isotope data show tight coherent arrays that, together with correlations with incompatible trace element ratios, indicate control by binary mixing processes. Poor correlations with elemental abundances require that this mixing took place prior to extensive fractional crystallisation. Olivines in the historic lavas have light δ18O values (+4.2 to +4.3‰), which is likely to be a feature of the enriched mantle source to Reykjanes Peninsula lavas. High precision Pb isotope analyses of other post-glacial Reykjanes Peninsula lavas show significant variability in 207Pb/204Pb and 208Pb/204Pb at lower 206Pb/204Pb values than in the historic lavas. This variation demonstrates that at least three compositionally distinct components within the mantle are required to explain the Pb isotope variations within the Reykjanes Peninsula as a whole. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
34.
The distribution of artifacts at the multi-component (Paleoindian through Middle Woodland) Munson Springs site (33Li251) is best explained by downward migration of objects through bioturbation processes rather than by a vertical sequence of occupation surfaces through a period of sediment accretion. At the noncultivated, 1800 m2, footslope site, the distribution of glacial diamict, loess, and drift- and bedrock-derived colluvium indicate widespread slope erosion during the late-glacial period with general backslope and footslope stability during the Holocene. Diagnostic Paleoindian artifacts were recovered from a BE soil horizon lying directly below fill material of a small (8 × 10 m) Early Woodland mound. Based on soil fine clay distribution, these artifacts lay about 30 cm below the premound land surface. Woodland artifacts are concentrated at depths of 10–20 cm immediately down slope from the mound. Soil horizonation and total and fine clay distributions within footslope profiles indicate no significant sediment accretion through the period of soil genesis and prehistoric site occupation. © 2001 John Wiley & Sons, Inc.  相似文献   
35.
Recent basaltic andesite lavas from Merapi volcano contain abundant,complexly zoned, plagioclase phenocrysts, analysed here fortheir petrographic textures, major element composition and Srisotope composition. Anorthite (An) content in individual crystalscan vary by as much as 55 mol% (An40–95) across internalresorption surfaces with a negative correlation between highAn mol% (>70), MgO wt% and FeO wt%. In situ Sr isotope analysesof zoned plagioclase phenocrysts show that the 87Sr/86Sr ratiosof individual zones range from 0·70568 to 0·70627.The upper end of this range is notably more radiogenic thanthe host basaltic andesite whole-rocks (< 0·70574).Crystal zones with the highest An content have the highest 87Sr/86Srvalues, requiring a source or melt with elevated radiogenicSr, rich in Ca and with lower Mg and Fe. Recent Merapi eruptiverocks contain abundant xenoliths, including metamorphosed volcanoclasticsediment and carbonate country rock (calc-silicate skarns) analysedhere for petrographic textures, mineralogy, major element compositionand Sr isotope composition. The xenoliths contain extremelycalcic plagioclase (up to An100) and have whole-rock 87Sr/86Srratios of 0·70584 to 0·70786. The presence ofthese xenoliths and their mineralogy and geochemistry, coupledwith the 87Sr/86Sr ratios observed in different zones of individualphenocrysts, indicate that magma–crust interaction atMerapi is potentially more significant than previously thought,as numerous crystal cores in the phenocrysts appear to be inheritedfrom a metamorphosed sedimentary crustal source. This has potentiallysignificant consequences for geochemical mass-balance calculations,volatile saturation and flux and eruptive behaviour at Merapiand similar island arc volcanic systems elsewhere. KEY WORDS: assimilation; isotopes; Merapi; xenolith; calc-silicate  相似文献   
36.
The Pleasant Bay layered gabbro-diorite complex (420 Ma) formed via repeated injections of mafic magma into a felsic magma chamber. It is dominated by repeating sequences (macrorhythmic units) with chilled gabbroic bases which may grade upward into medium-grained gabbro, diorite and granite. Each unit represents an injection of mafic magma into the chamber followed by differentiation. Increases in Sri and decreases in )Ndi with stratigraphic height indicate open-system isotopic behaviour and exchange between the mafic and felsic magmas. Isotopic variations of whole-rock samples in individual macrorhythmic units do not conform to bulk mixing or AFC models between potential parental magmas. Sr isotopic studies of single feldspar crystals from one macrorhythmic unit indicate that exchange of crystals between the resident felsic magma and mafic influxes was important, that some of the rocks contain feldspar xenocrysts, and that the rocks are isotopically heterogeneous on an intercrystal scale. Xenocryst abundance increases with stratigraphic height, suggesting that crystal exchange occurred in situ. The lack of disequilibrium textures in the xenocrystic feldspar indicates the evolved macrorhythmic magma and resident silicic magma were of a similar composition and likely in thermal equilibrium at the time of crystal transfer. Mafic chilled margins are enriched in alkalis and isotopically evolved compared with mafic dikes (representing the parental melts) and suggest rapid in-situ diffusional exchange following emplacement of individual mafic replenishments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号