首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   23篇
测绘学   39篇
大气科学   43篇
地球物理   109篇
地质学   89篇
海洋学   16篇
天文学   117篇
综合类   1篇
自然地理   20篇
  2021年   7篇
  2020年   14篇
  2019年   9篇
  2018年   17篇
  2017年   19篇
  2016年   24篇
  2015年   18篇
  2014年   21篇
  2013年   41篇
  2012年   20篇
  2011年   24篇
  2010年   17篇
  2009年   27篇
  2008年   21篇
  2007年   15篇
  2006年   12篇
  2005年   13篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   7篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1992年   2篇
  1990年   3篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1975年   4篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
  1968年   3篇
  1961年   1篇
  1958年   1篇
  1933年   1篇
  1931年   1篇
排序方式: 共有434条查询结果,搜索用时 531 毫秒
231.
The aim of this paper is to study a low energy fluvial system response to natural and anthropogenic forcing during the last two millennia. In contrast with longer timescales (Holocene to Quaternary), historical sedimentary archives are sparse in such systems which are typically characterized by the predominance of erosion compared with aggradation. We studied three main sections in the Moselle valley (northeastern France) by a multi‐proxy approach combining morphology, sedimentology, archaeological evidence, historical archives, and dating. The geochronological framework was based on Optically Stimulated Luminescence (OSL) and validated by independent age control. The exposed sediments were allocated to different historical periods from Roman period to present. The first results show that, in contrast with many other fluvial systems, the Moselle and its tributaries did not experience major changes during historical periods. Climatic changes such as the Little Ice Age had a minor influence on floodplain aggradation (e.g. in grain size or sedimentation rates) in the Moselle valley and were only able to affect the fluvial style. This provides evidence that the reworking of sediments is the main fluvial process at short timescales in the valley floors of the Moselle catchment. In contrast, anthropogenic forcing seems important not only during recent centuries but also since Roman times. This is suggested by the case‐study of the Metz‐Mazelle section where significant headward erosion and sedimentation were recognized, and may be related to human occupation. The results therefore point to a need for increasing geoarchaeological and geochronological research in the Moselle catchment and similar low energy fluvial systems. Such research is actually essential to improve the knowledge of the fluvial response to environmental changes during the historical periods and to recognize the respective influence of natural variability and human forcing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
232.
Quantitative regional assessments of streambed sedimentation and its likely causes are hampered because field investigations typically lack the requisite sample size, measurements, or precision for sound geomorphic and statistical interpretation. We adapted an index of relative bed stability (RBS) for data calculated from a national stream survey field protocol to enable general evaluation of bed stability and anthropogenic sedimentation in synoptic ecological surveys. RBS is the ratio of bed surface geometric mean particle diameter (Dgm) divided by estimated critical diameter (Dcbf) at bankfull flow, based on a modified Shield's criterion for incipient motion. Application of RBS to adequately depict bed stability in complex natural streams, however, has been limited because typical calculations of RBS do not explicitly account for reductions in bed shear stress that result from channel form roughness. We modified the index (RBS) to incorporate the reduction in bed shear stress available for sediment transport that results from the hydraulic resistance of large wood and longitudinal irregularities in channel dimensions (“form roughness”). Based on dimensional analysis, we derived an adjustment to bankfull shear stress by multiplying the bankfull hydraulic radius (Rbf) by the one-third power of the ratio of particle-derived resistance to total hydraulic resistance (Cp/Ct)1/3, where both resistances are empirically based calculations. We computed Cp using a Keulegan equation relating resistance to relative submergence of bed particles. We then derived an empirical equation to predict reach-scale hydraulic resistance Ct from thalweg mean depth, thalweg mean residual depth, and large wood volume based on field dye transit studies, in which total hydraulic resistance Ct was measured over a wide range of natural stream channel complexity, including manipulation of large wood volumes. We tested our estimates of Ct and RBS by applying them to data from a summer low flow probability sample of 104 wadeable stream reaches in the Coastal Ecoregion of Oregon and Washington, USA. Stream discharges calculated using these Ct estimates compared favorably with velocity–area measurements of discharge during summer low flow, and with the range of 1 to 2-year recurrence floods (scaled by drainage area) at U.S.Geological Survey gauged sites in the same region. Log [RBS] ranged from − 4.2 to + 0.98 in the survey region. Dgm ranged from silt to boulders, while estimated bankfull critical diameter, Dcbf, ranged from very fine gravel to large boulders. The median value of Dcbf (adjusted for form roughness influences) averaged 40% (inter quartile range 28 to 59%) of the unadjusted estimate Dcbf. Log[RBS] was consistently negatively related to human disturbances likely to produce excess sediment inputs or hydrologic alteration. Log [RBS] ranged from − 1.9 to + 0.5 in the streams within the lower quartile of human disturbance in their basin and riparian areas and was substantially lower (− 4.2 to − 1.1) in streams within the upper quartile of human disturbance. The synoptic survey methods and designs we used appear adequate to evaluate regional patterns in bed stability and sedimentation and their general relationship to human disturbances. Although the RBS concept also shows promise for evaluating sediment and bed stability in individual streams, our approach is relatively coarse, so site-specific assessments using these rapid field methods might prudently be confined to identifying severe cases of sedimentation or channel alteration. Greater confidence to discern subtle differences in site-specific assessments could be gained by calculating RBS using more precise field measurements of channel slope, bed particle size and bankfull dimensions, and by refining our adjustments for energy loss from channel form roughness.  相似文献   
233.
The presence of a solar burst spectral component with flux density increasing with frequency in the sub-terahertz range, spectrally separated from the well-known microwave spectral component, bring new possibilities to explore the flaring physical processes, both observational and theoretical. The solar event of 6 December 2006, starting at about 18:30 UT, exhibited a particularly well-defined double spectral structure, with the sub-THz spectral component detected at 212 and 405 GHz by the Solar Submilimeter Telescope (SST) and microwaves (1 – 18 GHz) observed by the Owens Valley Solar Array (OVSA). Emissions obtained by instruments onboard satellites are discussed with emphasis to ultra-violet (UV) obtained by the Transition Region And Coronal Explorer (TRACE), soft X-rays from the Geostationary Operational Environmental Satellites (GOES) and X- and γ-rays from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The sub-THz impulsive component had its closer temporal counterparts only in the higher energy X- and γ-rays ranges. The spatial positions of the centers of emission at 212 GHz for the first flux enhancement were clearly displaced by more than one arc-minute from positions at the following phases. The observed sub-THz fluxes and burst source plasma parameters were difficult to be reconciled with a purely thermal emission component. We discuss possible mechanisms to explain the double spectral components at microwaves and in the THz ranges.  相似文献   
234.
We present a pair of high-resolution smoothed particle hydrodynamics simulations that explore the evolution and cooling behaviour of hot gas around Milky Way size galaxies. The simulations contain the same total baryonic mass and are identical other than their initial gas density distributions. The first is initialized with a low-entropy hot gas halo that traces the cuspy profile of the dark matter, and the second is initialized with a high-entropy hot halo with a cored density profile as might be expected in models with pre-heating feedback. Galaxy formation proceeds in dramatically different fashion depending on the initial setup. While the low-entropy halo cools rapidly, primarily from the central region, the high-entropy halo is quasi-stable for  ∼4 Gyr  and eventually cools via the fragmentation and infall of clouds from ∼100 kpc distances. The low-entropy halo's X-ray surface brightness is ∼100 times brighter than current limits and the resultant disc galaxy contains more than half of the system's baryons. The high-entropy halo has an X-ray brightness that is in line with observations, an extended distribution of pressure-confined clouds reminiscent of observed populations and a final disc galaxy that has half the mass and ∼50 per cent more specific angular momentum than the disc formed in the low-entropy simulation. The final high-entropy system retains the majority of its baryons in a low-density hot halo. The hot halo harbours a trace population of cool, mostly ionized, pressure-confined clouds that contain ∼10 per cent of the halo's baryons after 10 Gyr of cooling. The covering fraction for H  i and Mg  ii absorption clouds in the high-entropy halo is ∼0.4 and ∼0.6, respectively, although most of the mass that fuels disc growth is ionized, and hence would be under counted in H  i surveys.  相似文献   
235.
A new scaling approach, based on the convective velocity obtained from the sun-exposed eastern slopes and thus suited for steep and narrow Alpine valleys, is investigated with respect to pollutant dispersion. The capability of the new method is demonstrated with the operational emergency response system of MeteoSwiss, which consists of the COSMO (COnsortium for Small-scale MOdelling) numerical weather prediction model coupled with a Lagrangian particle dispersion model (LPDM). The new scaling approach is introduced to the interface between COSMO and LPDM, and is compared to results of a classical similarity theory approach and to the operational coupling type, which uses the turbulent kinetic energy (TKE) from the COSMO model directly. For the validation of the modelling system, the TRANSALP-89 tracer experiment is used, which was conducted in highly complex terrain in southern Switzerland. The ability of the COSMO model to simulate the valley wind system is assessed with several meteorological surface stations, and the dispersion simulation is evaluated with the measurements from 25 surface samplers. The sensitivity of the modelling system towards the soil moisture, horizontal grid resolution, and boundary-layer height determination is investigated, and it is shown that, if the flow field is correctly reproduced, the new scaling approach improves the tracer concentration simulation when compared to classical coupling methods.  相似文献   
236.
As rockfall can cause a great deal of damage, it is essential to know its spatial propagation. Rockfall models are sensitive to the resolution of input data, i.e. the Digital Terrain Model (DTM) used. Nowadays, high resolution elevation data are available area‐wide from airborne laser scanning (ALS). However, rockfall models are designed for analysis on a certain scale, which means that high resolution input might not necessarily improve model results (e.g. for regional scale studies). Our aim is to estimate the reach of rockfall by analysing different input resolutions of an ALS DTM. The presented empirically–based model, implemented in Python 2.7, is a modified version of the zenital method including an iterative random walk trajectory model, which is designed for rockfall hazard assessment at the regional scale. Trajectories and rockfall probability maps are generated for selected DTM input resolutions. The comparison shows that high resolution DTMs do consider local topography better and thus lead to more realistic results than low resolution DTMs.  相似文献   
237.
In order to characterize the post-Svecofennian tectonothermal evolution of the Fennoscandian Shield, 40Ar–39Ar biotite and some 40Ar–39Ar muscovite geochronological data are reported from a total of 30 surface outcrop and 1,000 m long borehole samples at Forsmark, central Sweden. The 13 surface samples were collected across 3 branches of a major WNW to NW trending system of deformation zones, whereas the boreholes were drilled within a tectonic lens, in between two of these zones. The 40Ar–39Ar biotite ages indicate that the present erosion surface, in central Sweden, cooled below c. 300°C at 1.73–1.66 Ga, and that the rocks could have accommodated strain in a brittle manner between 1.8 and 1.7 Ga. The variation in surface ages is suggested to be due to fault along the large WNW to NW trending deformation zones, following the establishment of a sub-Cambrian peneplain. The minor variation of ages within a single crustal block may be due to disturbance along ENE to NNE trending fracture zones. Possible cooling paths, derived from 40Ar–39Ar hornblende, muscovite and biotite ages, were calculated for the time interval from 1.80 to 1.67 Ga, when the area cooled from c. 500 to 300°C. Cooling rates of 1.9–4°C/m.y. have been attained. Between 1.68 and 1.64 Ga, uplift rates of c. 22 m/m.y. were calculated from borehole 40Ar–39Ar biotite data. Tectonothermal histories, inferred from the combined cooling and uplift rates, are related to simple cooling after the Svecofennian orogeny, to crustal movement in response to far-field effects of c. 1.7 Ga orogenic activities further to the west or to a combination of these possibilities.  相似文献   
238.
Limestones containing radiaxial fibrous cements were sampled along the southern slope of the late Anisian (Middle Triassic) Latemar carbonate platform in the Dolomites, northern Italy. The Latemar upper slopes comprise massive microbial boundstone, whereas lower slopes are made of clinostratified grainstone, rudstone and breccia. Samples are representative of a seawater column from near sea‐level to an aphotic zone at about 500 m water depth. Radiaxial fibrous cements were analyzed for carbon (δ13C) and oxygen (δ18O) stable isotopic composition, as well as major and trace element content, to shed light on the origin of the slope facies zonation. The δ13C vary between 1·7‰ and 2·3‰ (Vienna Pee‐Dee Belemnite), with lowest values at palaeo‐water depths between 70 m and 300 m. Radiaxial fibrous cements yielded seawater‐like rare earth element patterns with light rare earth element depletion (NdSN/YbSN ≈ 0·4), superchondritic yttrium/holmium ratios (≈55) and negative cerium anomalies. Cadmium reaches maximum values of ca 0·5 to 0·7 μg/g at palaeo‐water depths between 70 m and 300 m; barium contents (0·8 to 1·8 μg/g) increase linearly with depth. The downslope patterns of δ13C and cadmium suggest increased nutrient and organic matter contents at depths between ca 70 m and 300 m and point to an active biological pump. The peak in cadmium and the minimum of δ13C mark a zone of maximum organic matter respiration and high nutrient and organic matter availability. The base of this zone at ca 300 m depth corresponds with the transition from massive microbial boundstone to clinostratified grainstone, rudstone and breccia. The microbial boundstone facies apparently formed only in seawater enriched in organic matter, possibly because this organic matter sustained benthic microbial communities at Latemar. The base of slope microbialites on high‐relief microbial carbonate platforms may be a proxy for the depth to maximum respiration zones of Palaeozoic and Mesozoic periplatform basins.  相似文献   
239.
The lateral distributions of Mn concentrations in the sediments of two Swiss lakes under varying oxygen conditions have been determined. The comparison of Mn distribution patterns with oxygen in the deep-water provides strong evidence for a geochemical-focusing effect, which is driven by the redox cycle of manganese. Conditions essential for this process to occur are anoxic sediments in contact with oxic deep-water. Average sedimentary manganese concentrations determined for different water-depth ranges are directly proportional to the area of shallower sediments. This result indicates that geochemical-focusing of manganese in lake sediments is a promising proxy indicator for the reconstruction of oxygen conditions during deposition.  相似文献   
240.
The laser‐induced breakdown detection (LIBD) is a very sensitive method for the direct detection of colloids based on the plasma generation on single particles by a focused, pulsed laser beam and the detection of the produced shock wave or plasma light emission. For the determination of colloid sizes the light emission of single plasmas is detected by a microscope CCD‐camera system. With known mean particle diameter and breakdown probability the particle concentration can be calculated. The application of the LIBD to monitor the change of colloid concentration and size during the purification steps of drinking water at the Bodensee (Lake Constance, Germany) water purification plant is shown. The breakdown probability, correlating to colloid number density, decreases with every purification step. By addition of FeCl3 as a precipitating agent and with an additional filtration step, not only suspended matter, but also colloids are effectively removed. After this process a remaining particle concentration of 50 ng/L and a mean particle diameter of 27 nm are found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号