首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   59篇
  国内免费   46篇
测绘学   26篇
大气科学   136篇
地球物理   183篇
地质学   180篇
海洋学   66篇
天文学   89篇
综合类   1篇
自然地理   94篇
  2024年   4篇
  2023年   3篇
  2022年   6篇
  2021年   27篇
  2020年   32篇
  2019年   21篇
  2018年   21篇
  2017年   26篇
  2016年   34篇
  2015年   33篇
  2014年   34篇
  2013年   48篇
  2012年   27篇
  2011年   41篇
  2010年   43篇
  2009年   46篇
  2008年   42篇
  2007年   39篇
  2006年   42篇
  2005年   31篇
  2004年   32篇
  2003年   20篇
  2002年   21篇
  2001年   15篇
  2000年   15篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   9篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1987年   1篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有775条查询结果,搜索用时 15 毫秒
11.
Shanghai experienced the longest rainy days in 2018/2019 winter since 1988. The physical cause of such an unusual climate condition was investigated through the diagnosis of observational data. From a seasonal perspective, a long persistent rainy winter was often associated with an El Niño condition in the equatorial Pacific. This abnormal oceanic condition induces a remote teleconnection pattern with pronounced low-level southerly anomalies over East China. The wind anomalies transported moisture from tropical oceans and caused persistent rainfall in East Asia. Meanwhile, the local rainfall time series exhibited a strong quasi-biweekly oscillation (QBWO). Three persistent rainy events were identified in the 2018/2019 winter and they all occurred during the active phase of the QBWO. The first two events were associated with a low pressure anomaly west of Shanghai. Southerly anomalies associated with the low pressure system advected high mean moisture into central eastern China, leading to the persistent rainfall there. The third event was associated with a high pressure anomaly in lower troposphere to the east of Shanghai, which induced anomalous southerlies to its west, favoring the occurrence of rainfall in Shanghai. The result suggests the importance of high-frequency variability in affecting seasonal rainfall anomalies.  相似文献   
12.
Predicting the future DOC flux from upland peat catchments   总被引:6,自引:0,他引:6  
  相似文献   
13.
14.
Change and variability in the timing and magnitude of sea ice geophysical and thermodynamic state have consequences on many aspects of the arctic marine system. The changes in both the geophysical and thermodynamic state, and in particular the timing of the development of these states, have consequences throughout the marine system. In this paper we review the ??consequences?? of change in sea ice state on primary productivity, marine mammal habitats, and sea ice as a medium for storage and transport of contaminants and carbon exchange across the ocean-sea-ice-atmosphere interface based upon results from the International Polar Year. Pertinent results include: 1) conditions along ice edges can bring deep nutrient-rich ??pacific?? waters into nutrient-poor surface waters along the arctic coast, affecting local food webs; 2) both sea ice thermodynamic and dynamic processes ultimately affect ringed seal/polar bear habitats by controlling the timing, location and amount of surface deformation required for ringed seal and polar bear preferred habitat 3) the ice edges bordering open waters of flaw leads are areas of high biological production and are observed to be important beluga habitat. 4) exchange of climate-active gases, including CO2, is extremely active in sea ice environments, and the overall question of whether the Arctic Ocean is (or will be) a source or sink for CO2 will be dependent on the balance of competing climate-change feedbacks.  相似文献   
15.
The morphological evolution of embayed beaches on a microtidal coast is assumed to largely respond to the degree of exposure to wave conditions, decreasing the mobility with increasing beach indentation (and vice versa). However, the number of sediment arrivals at the beach or the impact of extreme storms can modify this relationship. Here, we present an analysis of 10 embayed beaches along the Catalan coast with different morphometric and sedimentary characteristics to identify the most relevant parameters controlling the morphological evolution of these embayed beaches at the inter-annual and decadal scales. The study was mostly based on LiDAR topographic data collected from 2012 to 2017, aerial photographs from 1945 to 2021, sediment sampling and a long-term series analysis of the forcing parameters (waves, sea level, precipitation and land-use changes). The results show a net loss of volume on all the studied beaches at an inter-annual scale and a general shoreline retreat during the last few decades, suggesting the influence of common processes on the evolution of the studied beaches. Smaller pocket beaches with medium-to-high indentations are more sensitive to changes induced by local factors and show higher variability in the volume of the emerged beach and shoreline position than larger beaches. The most relevant factors influencing the evolution of the studied beaches on a decadal scale were identified as changes in sea level and the reduction in sediment inputs provided by streams due to land-use changes in the drainage basin. At the inter-annual scale, the impact of extreme events is the main factor controlling beach behaviour. These general trends can be opposite locally for beaches that receive large amounts of sediment via longshore transport from adjacent beaches.  相似文献   
16.
Metamorphic equilibration requires chemical communication between minerals and may be inhibited through sluggish volume diffusion and or slow rates of dissolution in a fluid phase. Relatively slow diffusion and the perceived robust nature of chemical growth zoning may preclude garnet porphyroblasts from readily participating in low‐temperature amphibolite facies metamorphic reactions. Garnet is widely assumed to be a reactant in staurolite‐isograd reactions, and the evidence for this has been assessed in the Late Proterozoic Dalradian pelitic schists of the Scottish Highlands. The 3D imaging of garnet porphyroblasts in staurolite‐bearing schists reveals a good crystal shape and little evidence of marginal dissolution; however, there is also lack of evidence for the involvement of either chlorite or chloritoid in the reaction. Staurolite forms directly adjacent to the garnet, and its nucleation is strongly associated with deformation of the muscovite‐rich fabrics around the porphyroblasts. “Cloudy” fluid inclusion‐rich garnet forms in both marginal and internal parts of the garnet porphyroblast and is linked both to the production of staurolite and to the introduction of abundant quartz inclusions within the garnet. Such cloudy garnet typically has a Mg‐rich, Mn‐poor composition and is interpreted to have formed during a coupled dissolution–reprecipitation process, triggered by a local influx of fluid. All garnet in the muscovite‐bearing schists present in this area is potentially reactive, irrespective of the garnet composition, but very few of the schists contain staurolite. The staurolite‐producing reaction appears to be substantially overstepped during the relatively high‐pressure Barrovian regional metamorphism reflecting the limited permeability of the schists in peak metamorphic conditions. Fluid influx and hence reaction progress appear to be strongly controlled by subtle differences in deformation history. The remaining garnet fails to achieve chemical equilibrium during the reaction creating distinctive patchy compositional zoning. Such zoning in metamorphic garnet created during coupled dissolution–reprecipitation reactions may be difficult to recognize in higher grade pelites due to subsequent diffusive re‐equilibration. Fundamental assumptions about metamorphic processes are questioned by the lack of chemical equilibrium during this reaction and the restricted permeability of the regional metamorphic pelitic schists. In addition, the partial loss of prograde chemical and textural information from the garnet porphyroblasts cautions against their routine use as a reliable monitor of metamorphic history. However, the partial re‐equilibration of the porphyroblasts during coupled dissolution–reprecipitation opens possibilities of mapping reaction progress in garnet as a means of assessing fluid access during peak metamorphic conditions.  相似文献   
17.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
18.
19.
Novel approaches to garnet analysis have been used to assess rates of intergranular diffusion between different matrix phases and garnet porphyroblasts in a regionally metamorphosed staurolite‐mica‐schist from the Barrovian‐type area in Scotland. X‐ray maps and chemical traverses of planar porphyroblast surfaces reveal chemical heterogeneity of the garnet grain boundary linked to the nature of the adjacent matrix phase. The garnet preserves evidence of low temperature retrograde exchange with matrix minerals and diffusion profiles documenting cation movement along the garnet boundaries. Garnet–quartz and garnet–plagioclase boundaries preserve evidence of sluggish Mg, Mn and Fe diffusion at comparable rates to volume diffusion in garnet, whereas diffusion along garnet–biotite interfaces is much more effective. Evidence of particularly slow Al transport, probably coupled to Fe3+ exchange, is locally preserved on garnet surfaces adjacent to Fe‐oxide phases. The Ca distribution on the garnet surface shows the most complex behaviour, with long‐wavelength heterogeneities apparently unrelated to the matrix grain boundaries. This implies that the Ca content of garnet is controlled by local availability and is thought likely to reflect disequilibrium established during garnet growth. Geochemical anomalies on the garnet surfaces are also linked to the location of triple junctions between the porphyroblasts and the matrix phases, and imply enhanced transport along these channels. The slow rates of intergranular diffusion and the characteristics of different boundary types may explain many features associated with the prograde growth of garnet porphyroblasts. Thus, minerals such as quartz, Fe‐oxides and plagioclase whose boundaries with garnet are characterized by slow intergranular diffusion rates appear to be preferentially trapped as inclusions within porphyroblasts. As such grain boundary diffusion rates may be a significant kinetic impediment to metamorphic equilibrium and garnet may struggle to maintain chemical and textural equilibrium during growth in pelites.  相似文献   
20.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号