首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   17篇
  国内免费   4篇
测绘学   8篇
大气科学   41篇
地球物理   65篇
地质学   103篇
海洋学   47篇
天文学   50篇
综合类   4篇
自然地理   16篇
  2023年   1篇
  2022年   10篇
  2021年   12篇
  2020年   7篇
  2019年   8篇
  2018年   18篇
  2017年   13篇
  2016年   24篇
  2015年   10篇
  2014年   32篇
  2013年   24篇
  2012年   20篇
  2011年   17篇
  2010年   12篇
  2009年   14篇
  2008年   16篇
  2007年   8篇
  2006年   9篇
  2005年   16篇
  2004年   6篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1984年   2篇
  1980年   1篇
  1978年   3篇
  1975年   1篇
排序方式: 共有334条查询结果,搜索用时 31 毫秒
201.
Black Box (Eucalyptus largiflorens F. Muell.), is a keystone tree species of lowland semi-arid floodplain ecosystems in south-eastern Australia. E. largiflorens woodlands are of high conservation value and threatened by climate change-induced drought and irrigation water diversions due to their location on upper floodplain areas where flood frequency has declined. Water requirements of E. largiflorens have not been well quantified using empirical data. Accordingly, knowledge gaps exist in relation to volumes of environmental water required to maintain and improve ecological condition for disconnected floodplain woodlands. To further assist conservation and water resource management, we tested the use of drip irrigation to provide a variety of water regimes to experimental plots in order to monitor tree responses. Water was provided via irrigation delivery across four regimes representing known volumes of water, referred to as an environmental water provision, applied over a 22-week period for two Austral summers. Benefits to trees were identified by measuring transpiration and plant water status using sap flow sensors and a Scholander pressure chamber, respectively. Results indicate that volumes of 0.3, 0.4, 0.7 and 0.8 ML increased transpiration and improved plant water status in comparison to a control, with delivery recommended to commence early autumn. Greater volumes (1.4 ML), substantially increased transpiration and improved water status, especially when delivered at a rate of ~25 mm week−1 compared to a monthly 'burst' which broadly represented natural, sporadic summer rainfall in the region. For an environmental watering provision of 25 mm week−1, ~178 ha of E. largiflorens woodland can be watered with a 1 GL environmental water allocation. The study methods presented are relevant worldwide and our results further the collective understanding of the benefits environmental water provides to E. largiflorens.  相似文献   
202.
Yu  Jihyun  Kang  Min Joo  Kim  Yun Jae  Park  Mi-Jeong  Lim  Jae Kyu  Noh  Choong Hwan  Kang  Sung Gyun  Lee  Hyun Sook  Lee  Jung-Hyun  Kwon  Kae Kyoung 《Ocean Science Journal》2021,56(3):297-306
Ocean Science Journal - The Korean rockfish, Sebastes schlegeli, is most commonly farmed in sea cages along the coast of Korea; however, detailed information on intestinal microbiota regarding this...  相似文献   
203.
This paper examines the soil loss spatial patterns in the Keiskamma catchment using the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) to assess the soil erosion risk of the catchment. SATEEC estimates soil loss and sediment yield within river catchments using the Revised Universal Soil Loss Equation (RUSLE) and a spatially distributed sediment delivery ratio. Vegetation cover in protected areas has a significant effect in curtailing soil loss. The effect of rainfall was noted as two pronged, higher rainfall amounts received in the escarpment promote vegetation growth and vigour in the Amatole mountain range which in turn positively provides a protective cover to shield the soil from soil loss. The negative aspect of high rainfall is that it increases the rainfall erosivity. The Keiskamma catchment is predisposed to excessive rates of soil loss due to high soil erodibility, steep slopes, poor conservation practices and low vegetation cover. This soil erosion risk assessment shows that 35% of the catchment is prone to high to extremely high soil losses higher than 25 ton ha−1 year−1 whilst 65% still experience very low to moderate levels of soil loss of less than 25 ton ha−1 year−1. Object based classification highlighted the occurrence of enriched valley infill which flourishes in sediment laden ephemeral stream channels. This occurrence increases gully erosion due to overgrazing within ephemeral stream channels. Measures to curb further degradation in the catchment should thrive to strengthen the role of local institutions in controlling conservation practice.  相似文献   
204.
Military shooting range soils contaminated by heavy metals have been subjected to remediation efforts to alleviate the detrimental effects of exposure on humans and the surrounding environment. Waste materials can be used as cost-effective soil amendments to immobilize heavy metals in contaminated soils. In this study, naturally occurring lime-based waste materials including egg shells, oyster shells, and mussel shells were assessed for their effectiveness toward heavy metal immobilization in military shooting range soil in Korea. Soil was treated in batch leaching experiments with 0, 2.5, 5, 10, and 15% of each lime-based waste material. The results showed that the lime-based waste materials effectively reduced water-soluble Pb at an application rate of 2.5% by weight of the soil. Increase in soil pH from 6.6 to 8.0 was considered to be the main chemistry of Pb immobilization, which was supported by the formation of insoluble Pb species at high pH values as confirmed by the visual MINTEQ thermodynamic model. In contrary, water-soluble Cu was increased in the lime-based waste material-treated soils when compared to the untreated soil. This was likely attributed to the formation of soluble Cu?CDOC (dissolved organic carbon) complexes as all lime-based waste materials applied increased DOC contents in the soil. Therefore, care must be taken in selecting the appropriate amendment for immobilizing metals in shooting range soils.  相似文献   
205.
We present a multi-proxy record (pollen, microscopic charcoal, magnetic susceptibility, carbon-isotopic composition, total organic carbon [TOC], carbon/nitrogen [C/N] ratios, and particle size) of the late Holocene environmental change and human activities from Bongpo marsh on the east coast of Korea. Mutual interaction between the environment and humans during the late Holocene has not been properly investigated in Korea due to the lack of undisturbed samples with high sedimentation rates. In this study, the history of human responses to late Holocene environmental changes is clearly reconstructed using a multi-proxy paleoenvironmental approach that has not previously been applied in Korea. The evidence from Bongpo marsh indicates that 1) Bongpo marsh began to develop ca. 650 BC as a coastal lagoon was rapidly filled with organic matter, 2) agricultural disturbance around the study site remained slight until ca. AD 600, 3) full-scale intensive agriculture prevailed and the area of deforestation increased between ca. AD 600 and ca. AD 1870, and 4) the land use changed from lowland rice agriculture to upland cultivation when agricultural productivity declined after AD 1870, probably due to severe deforestation and the consequent heavy influx of clastic sediment on rice fields, as described in various historical documents.  相似文献   
206.
In the heavily industrialized Masan Bay of southern coast, Korea, the potential harmful effects of heavy metals (Cd, Co, Cu, Ni, Pb, Sn, Zn, and Hg) were evaluated in terms of the pollution load index (PLI) and ecological risk assessment index (ERI) methods, and the results obtained were considered alongside the health of the macrobenthic fauna communities. The results revealed that the bay sediments, especially in the inner bay and the outfall area of a sewage treatment plant, are exposed to moderate to serious levels of metal pollution. Hg and Cd contributed the most to the potential toxicity response indices in sediments recently deposited in the bay. The potential ecological risk assessment of heavy metals in the bay was highlighted by the use of the benthic biological pollution index (BPI), suggesting that the ERI is a useful toxicity response index, which can quantify the overall ecological risk level to a target environment.  相似文献   
207.
This study examined water quality in the upper Animas River watershed, a mined watershed that gained notoriety following the 2015 Gold King mine release of acid mine drainage to downstream communities. Water-quality data were used to evaluate trends in metal concentrations and loads over a two-decade period. Selected sites included three sites on tributary streams and one main-stem site on the Animas River downstream from the tributary confluences. During the study period, metal concentrations and loads varied seasonally and annually because of hydrologic variability and remedial actions designed to ameliorate the effects of acid mine drainage. Water-quality data were divided into two periods based on the timing of remedial activities in the watershed. The first period includes active water treatment, surface reclamation and installation of bulkheads in adits; the second period includes the decade following these activities. Water-quality data were used to estimate annual and monthly zinc loads using the Adjusted Maximum Likelihood Method (using LOADEST software) and U.S. Geological Survey streamflow data. This study presents one of the first applications of LOADEST focused on metal loads. Monthly flow-weighted concentrations were analysed using a Mann-Kendall trend test to determine the direction, magnitude, and significance of temporal trends in zinc loading in any given month and using t-test comparisons between the two periods. Zinc loads estimated for the Animas River below the tributaries indicate decreased zinc loading during the rising limb of the hydrograph in the second period, perhaps reflecting a reduction of snowmelt-derived zinc load following surface reclamation activities. In contrast, base-flow zinc loading increased at the main-stem site, perhaps because of the cessation of water treatment in tributary streams. Flow weighting of monthly load estimates yielded increased statistical significance and enabled more nuanced differentiation between the effects of hydrologic variability and remedial activities on zinc loading.  相似文献   
208.
The geochemical characteristics of an approximately 6‐m‐long sediment core collected from the Jeongokri archaeological site (Hantan River, Korea) were examined to determine the provenance of the sediments and to reconstruct the palaeoenvironment of the study area during the Late Pleistocene (200–127 ka). The core sediments were subdivided into two parts based on grain size: an upper (0–380 cm depth) and lower part (>380 cm depth). The lower part was deposited primarily by fluvial processes during an interglacial period [marine isotope stage (MIS) 7] with warm and humid conditions. Conversely, the upper part was mainly deposited by aeolian processes during a cold and dry glacial period (MIS 6). Geochemical characteristics, represented by major, trace and rare earth element (REE) compositions, and textures of the Jeongokri core sediments show distinct differences between the upper and lower parts. The mineralogy and major, trace and REE compositions indicate that the influence of felsic source rocks (e.g. granite) was dominant in the lower sediments, which were derived from the Hantan River. In contrast, increased quartz content and the very fine and homogeneous grain size in the upper sediments indicate an aeolian origin. REE ratios and distribution patterns, and geochemical signatures indicate that these sediments were derived predominantly from Chinese loess deposits and partially from local sediments from the Korean Peninsula; the possible source area of the upper sediments is the northern part of the Yellow Sea basin. The Yellow Sea basin, having mixed geochemical signatures between Chinese loess and Korean‐derived sediments, was exposed because of low sea levels during MIS 6. The exposed Yellow Sea basin was located in the path of winter‐monsoon winds, which may have carried a great deal of airborne sediments from the basin to the Jeongokri area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
209.
210.
Floodplain red gum forests (Eucalyptus camaldulensis plus associated grasses, reeds and sedges) are sites of high biodiversity in otherwise arid regions of southeastern Australia. They depend on periodic floods from rivers, but dams and diversions have reduced flood frequencies and volumes, leading to deterioration of trees and associated biota. There is a need to determine their water requirements so environmental flows can be administered to maintain or restore the forests. Their water requirements include the frequency and extent of overbank flooding, which recharges the floodplain soils with water, as well as the actual amount of water consumed in evapotranspiration (ET). We estimated the flooding requirements and ET for a 38 134 ha area of red gum forest fed by the Murrumbidgee River in Yanga National Park, New South Wales. ET was estimated by three methods: sap flux sensors placed in individual trees; a remote sensing method based on the Enhanced Vegetation Index from MODIS satellite imagery and a water balance method based on differences between river flows into and out of the forest. The methods gave comparable estimates yet covered different spatial and temporal scales. We estimated flood frequency and volume requirements by comparing Normalized Difference Vegetation Index values from Landsat images with flood history from 1995 to 2014, which included both wet periods and dry periods. ET during wet years is about 50% of potential ET but is much less in dry years because of the trees' ability to control stomatal conductance. Based on our analyses plus other studies, red gum trees at this location require environmental flows of 2000 GL yr?1 every other year, with peak flows of 20 000 ML d?1, to produce flooding sufficient to keep them in good condition. However, only about 120–200 GL yr?1 of river water is consumed in ET, with the remainder flowing out of the forest where it enters the Murray River system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号