首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  国内免费   1篇
测绘学   1篇
大气科学   4篇
地球物理   23篇
地质学   28篇
海洋学   16篇
天文学   14篇
综合类   1篇
自然地理   3篇
  2022年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   7篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1992年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
51.
Results from computational morphodynamics modeling of coupled flow–bed–sediment systems are described for 10 applications as a review of recent advances in the field. Each of these applications is drawn from solvers included in the public-domain International River Interface Cooperative (iRIC) software package. For mesoscale river features such as bars, predictions of alternate and higher mode river bars are shown for flows with equilibrium sediment supply and for a single case of oversupplied sediment. For microscale bed features such as bedforms, computational results are shown for the development and evolution of two-dimensional bedforms using a simple closure-based two-dimensional model, for two- and three-dimensional ripples and dunes using a three-dimensional large-eddy simulation flow model coupled to a physics-based particle transport model, and for the development of bed streaks using a three-dimensional unsteady Reynolds-averaged Navier–Stokes solver with a simple sediment-transport treatment. Finally, macroscale or channel evolution treatments are used to examine the temporal development of meandering channels, a failure model for cantilevered banks, the effect of bank vegetation on channel width, the development of channel networks in tidal systems, and the evolution of bedrock channels. In all examples, computational morphodynamics results from iRIC solvers compare well to observations of natural bed morphology. For each of the three scales investigated here, brief suggestions for future work and potential research directions are offered. © 2019 The Authors Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd  相似文献   
52.
53.
When subjected to long‐period ground motions, high‐rise buildings' upper floors undergo large responses. Furniture and nonstructural components are susceptible to significant damage in such events. This paper proposes a full‐scale substructure shaking table test to reproduce large floor responses of high‐rise buildings. The response at the top floor of a virtual 30‐story building model subjected to a synthesized long‐period ground motion is taken as a target wave for reproduction. Since a shaking table has difficulties in directly reproducing such large responses due to various capacity limitations, a rubber‐and‐mass system is proposed to amplify the table motion. To achieve an accurate reproduction of the floor responses, a control algorithm called the open‐loop inverse dynamics compensation via simulation (IDCS) algorithm is used to generate a special input wave for the shaking table. To implement the IDCS algorithm, the model matching method and the H method are adopted to construct the controller. A numerical example is presented to illustrate the open‐loop IDCS algorithm and compare the performance of different methods of controller design. A series of full‐scale substructure shaking table tests are conducted in E‐Defense to verify the effectiveness of the proposed method and examine the seismic behavior of furniture. The test results demonstrate that the rubber‐and‐mass system is capable of amplifying the table motion by a factor of about 3.5 for the maximum velocity and displacement, and the substructure shaking table test can reproduce the large floor responses for a few minutes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
54.
A concise explanation of studies on distortion of space-time dimension is briefly introduced. Second we obtain the limits (i.e., bounded values) of the dimensionless chemical potential μ, the Sunyaev–Zeldovich (SZ) effect y and distortion of the space-dimension ε by Monte Carlo (MC) analysis of the parameter set (T, d=3+ε, μ, and y) in cosmic microwave data assuming that the SZ effect is positive (y>0). In this analysis, the magnitude of the space-dimension d with distortion of the space-dimension ε is defined by d=3+ε. The limits of μ and y are determined as |μ|<9×10?5 (2σ) (μ=(?3.9±2.6)×10?5 (σ)), |y|<5×10?6 (2σ) (y=(2.0±1.4)×10?6 (σ)), while the distortion of the space-dimension is |ε|<6×10?5 (2σ) (ε=(?0.78±2.50)×10?5 (σ)). The magnitudes of these three estimated limits are ordered as . The estimated limit of |y|<5×10?6 appears to be related to re-ionization processes occurring at redshift z ri ~10. We also present data analysis assuming a relativistic SZ effect.  相似文献   
55.
A simple calculation procedure for estimating absolute maximum slip displacement of a freestanding rigid body placed on the ground or floor of linear/nonlinear multi‐storey building during an earthquake is developed. The proposed procedure uses the displacement induced by the horizontal sinusoidal acceleration to approximate the absolute maximum slip displacement, i.e. the basic slip displacement. The amplitude of this horizontal sinusoidal acceleration is identical to either the peak horizontal ground acceleration or peak horizontal floor response acceleration. Its period meets the predominant period of the horizontal acceleration employed. The effects of vertical acceleration are considered to reduce the friction force monotonously. The root mean square value of the vertical acceleration at the peak horizontal acceleration is used. A mathematical solution of the basic slip displacement is presented. Employing over one hundred accelerograms, the absolute maximum slip displacements are computed and compared with the corresponding basic slip displacements. Their discrepancies are modelled by the logarithmic normal distribution regardless of the analytical conditions. The modification factor to the basic slip displacement is quantified based on the probability of the non‐exceedence of a certain threshold. Therefore, the product of the modification factor and the basic slip displacement gives the design slip displacement of the body as the maximum expected value. Since the place of the body and linear/nonlinear state of building make the modification factor slightly vary, ensuring it to suit the problem is essential to secure prediction accuracy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
56.
This paper reports stick-slip behaviors of Indian gabbro as studied using a new large-scale biaxial friction apparatus, built in the National Research Institute for Earth Science and Disaster Prevention (NIED), Tsukuba, Japan. The apparatus consists of the existing shaking table as the shear-loading device up to 3, 600 kN, the main frame for holding two large rectangular prismatic specimens with a sliding area of 0.75 m2 and for applying normal stresses σn up to 1.33 MPa, and a reaction force unit holding the stationary specimen to the ground. The shaking table can produce loading rates v up to 1.0 m/s, accelerations up to 9.4 m/s2, and displacements d up to 0.44 m, using four servocontrolled actuators. We report results from eight preliminary experiments conducted with room humidity on the same gabbro specimens at v = 0.1-100 mm/s and σn = 0.66-1.33 MPa, and with d of about 0.39 m. The peak and steady-state friction coefficients were about 0.8 and 0.6, respectively, consistent with the Byerlee friction. The axial force drop or shear stress drop during an abrupt slip is linearly proportional to the amount of displacement, and the slope of this relationship determines the stiffness of the apparatus as 1.15×108 N/m or 153 MPa/m for the specimens we used. This low stiffness makes fault motion very unstable and the overshooting of shear stress to a negative value was recognized in some violent stick-slip events. An abrupt slip occurred in a constant rise time of 16-18 ms despite wide variation of the stress drop, and an average velocity during an abrupt slip is linearly proportional to the stress drop. The use of a large-scale shaking table has a great potential in increasing the slip rate and total displacement in biaxial friction experiments with large specimens.  相似文献   
57.
This study investigated the eastern Pacific Intertropical Convergence Zone (ITCZ) as an atmospheric forcing to the ocean by using various observed and reanalysis data sets over 29 years. Climatologically, a zonal band of positive wind stress curl (WSC) with a 10° meridional width was exhibited along the ITCZ. A southward shift of the positive WSC band during the El Niño phase induced a negative (positive) WSC anomaly along the northern (southern) portion of the ITCZ, and vice versa during the La Niña phase. This meridional dipole accounted for more than 25 % of interannual variances of the WSC anomalies (WSCAs), based on analysis of the period 1993–2008. The negative (positive) WSCA in the northern portion of the ITCZ during the El Niño (La Niña) phase was collocated with a positive (negative) sea surface height anomaly (SSHA) that propagated westward as a Rossby wave all the way to the western North Pacific. This finding indicates that this off-equatorial Rossby wave is induced by the WSCA around the ITCZ. Our analysis of a 1.5-layer reduced gravity model revealed that the Rossby waves are mostly explained by wind stress forcing, rather than by reflection of an equatorial Kelvin wave on the eastern coastal boundary. The off-equatorial Rossby wave had the same SSHA polarity as the equatorial Kelvin wave, and generation of a phase-preserving Rossby wave without the Kelvin wave reflection was explained by meridional movement of the ITCZ. Thus, the ITCZ acts as an atmospheric bridge that connects the equatorial and off-equatorial oceanic waves.  相似文献   
58.
Ocean Dynamics - We demonstrate that assimilation of water temperature measurements by sea turtles into an operational ocean nowcast/forecast system improves representation of mesoscale eddies and...  相似文献   
59.
The behavior of boron and its isotopes in fluid-dominant processes and hydrothermal alteration of granites is examined using fresh and altered granite samples from the Qitianling granite and associated hydrothermal tin deposits in South China. Boron concentrations are highest in the fresh granite (37 ppm) and depleted as a result of two stages of fluid mobility and fluid–rock interaction within the granite. Constraints provided both by δ11B and δ18O data suggest that the first stage was related to exsolution of aqueous fluids from the granite magma at a temperature of > 450 °C. This was followed by further boron depletion in the granite by hydrothermal circulation of meteoric water at lower temperatures (~ 350 °C) and low water/rock ratios. The sensitivity of coupled boron and oxygen isotope systematics to these processes suggests that they can provide valuable constraints on of fluid mobility in granite and associated mineralization.  相似文献   
60.
The contribution of subducted carbonate sediments to the genesis of the Southwestern Colombian arc magmas was investigated using a comprehensive petrography and geochemical analysis, including determination of major and trace element contents and Sr, Nd, Hf and Pb isotope compositions. These data have been used to constrain the depth of decarbonation in the subducted slab, indicating that the decarbonation process continues into the sub-arc region, and ultimately becomes negligible in the rear arc. We propose on the basis of multi-isotope approach and mass balance calculations, that the most important mechanism to induce the slab decarbonation is the infiltration of chemically reactive aqueous fluids from the altered oceanic crust, which decreasingly metasomatize the mantle wedge, triggering the formation of isotopically different primary magmas from the volcanic front (VF) with relatively high 176Hf/177Hf, high 87Sr/86Sr, negative values of εNd and lower Pb isotopes compared to the rear arc (RA).The presence of more aqueous fluids at the volcanic front may increase the degree of decarbonation into carbonate-bearing lithologies. Moreover, with increasing pressure and temperature in the subduction system, the decrease in dehydration of the slab, leads to cessation of fluid-induced decarbonation reactions at the rear arc. This development allows the remaining carbonate materials to be recycled into the deep mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号