首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   10篇
地球物理   10篇
地质学   17篇
海洋学   3篇
天文学   5篇
自然地理   7篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
51.
Whale carcasses (whale falls) deposited on the deep seafloor are associated with a distinctive biotic community. A fossil whale bone recovered from São Paulo Ridge, South Atlantic Ocean, during cruise YK13–04 Leg 1 of R/V Yokosuka was covered by a ferromanganese (Fe–Mn) crust approximately 9 mm thick. Here, we report an age constraint for this fossil bone on the basis of Os isotopic stratigraphy (187Os/188Os ratio) of the Fe–Mn crust. Major‐ and trace‐element compositions of the crust are similar to those of Fe–Mn crusts of predominantly hydrogenous origin. Rare earth element concentrations in samples of the crust, normalized with respect to Post‐Archean average Australian Shale, exhibit flat patterns with positive Ce and negative Y anomalies. These results indicate that the Fe–Mn crust consists predominantly of hydrogenous components and that it preserves the Os isotope composition of seawater at the time of its deposition. 187Os/188Os ratios of three Fe–Mn crust samples increased from 0.904 to 1.068 in ascending stratigraphic order. The value of 1.068 from the surface slice (0–3 mm depth in the crust) was identical to that of present‐day seawater within error (~1.06). The value of 0.904 from the basal slice (6–9 mm) equaled seawater values from ca. 4–5 Ma. Because it is unknown how long the bone lay on the seafloor before the Fe–Mn crust was deposited, the Os stratigraphic age of ca. 5 Ma is a minimum age of the fossil. This is the first application, to our knowledge, of marine Os isotope stratigraphy for determining the age of a fossil whale bone. Such data may offer valuable insights into the evolution of the whale‐fall biotic community.  相似文献   
52.
Decadal climate predictability is examined in hindcast experiments by a multi-model ensemble using three versions of the coupled atmosphere-ocean model MIROC. In these hindcast experiments, initial conditions are obtained from an anomaly assimilation procedure using the observed oceanic temperature and salinity with prescribed natural and anthropogenic forcings on the basis of the historical data and future emission scenarios in the Intergovernmental Panel of Climate Change. Results of the multi-model ensemble in our hindcast experiments show that predictability of surface air temperature (SAT) anomalies on decadal timescales mostly originates from externally forced variability. Although the predictable component of internally generated variability has considerably smaller SAT variance than that of externally forced variability, ocean subsurface temperature variability has predictive skills over almost a decade, particularly in the North Pacific and the North Atlantic where dominant signals associated with Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) are observed. Initialization enhances the predictive skills of AMO and PDO indices and slightly improves those of global mean temperature anomalies. Improvement of these predictive skills in the multi-model ensemble is higher than that in a single-model ensemble.  相似文献   
53.
In Japan, the crust and uppermost mantle seismic character is yet unimaged although many refraction surveys have been recorded. The longest seismic profiles are analyzed. A remarkable feature, a long-duration coda wave after the PmP wave (reflected wave at the Moho boundary), is observed on the record sections. Several possible models are considered to explain the long-duration coda wave. The model with many scatterers located in the uppermost mantle explains the observed data well while the undulating Moho and continuous layering models do not account for some aspects of the observed data. The scatterer distributed uppermost mantle is not consistent with that of continental region which is often characterized as transparent. We estimate the scattering coefficient of the uppermost mantle and crust using simulations. The scattering coefficients obtained for upper crust, lower crust, and uppermost mantle are 0.01, 0.02, and 0.025, respectively. The scattering coefficient of the uppermost mantle is slightly larger than that of lower crust, which is characterized as being reflective. The many scatterers in the uppermost mantle might be related to magmatism in Japan. This will be one of the important observations for understanding formation processes of the Moho boundary and uppermost mantle in the island-arc environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号