首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101413篇
  免费   1365篇
  国内免费   798篇
测绘学   2330篇
大气科学   6784篇
地球物理   19535篇
地质学   36277篇
海洋学   9309篇
天文学   23416篇
综合类   252篇
自然地理   5673篇
  2022年   657篇
  2021年   1138篇
  2020年   1236篇
  2019年   1400篇
  2018年   2873篇
  2017年   2666篇
  2016年   3114篇
  2015年   1618篇
  2014年   3001篇
  2013年   5305篇
  2012年   3309篇
  2011年   4305篇
  2010年   3937篇
  2009年   4957篇
  2008年   4387篇
  2007年   4434篇
  2006年   4160篇
  2005年   3037篇
  2004年   2965篇
  2003年   2768篇
  2002年   2729篇
  2001年   2355篇
  2000年   2346篇
  1999年   1901篇
  1998年   1958篇
  1997年   1797篇
  1996年   1519篇
  1995年   1514篇
  1994年   1326篇
  1993年   1228篇
  1992年   1158篇
  1991年   1152篇
  1990年   1160篇
  1989年   1014篇
  1988年   941篇
  1987年   1077篇
  1986年   946篇
  1985年   1198篇
  1984年   1332篇
  1983年   1291篇
  1982年   1197篇
  1981年   1082篇
  1980年   1008篇
  1979年   917篇
  1978年   884篇
  1977年   784篇
  1976年   756篇
  1975年   751篇
  1974年   722篇
  1973年   782篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
571.
 The new GFZ/GRGS gravity field models GRIM5-S1 and GRIM5-C1, currently used as initial models for the CHAMP mission, have been compared with other recent models (JGM 3, EGM 96) for radial orbit accuracy (by means of latitude lumped coefficients) in computations on altimetry satellite orbits. The bases for accuracy judgements are multi-year averages of crossover sea height differences from Geosat and ERS 1/2 missions. This radially sensitive data is fully independent of the data used to develop these gravity models. There is good agreement between the observed differences in all of the world's oceans and projections of the same errors from the scaled covariance matrix of their harmonic geopotential coefficients. It was found that the tentative scale factor of five for the formal standard deviations of the harmonic coefficients of the new GRIM fields is justified, i.e. the accuracy estimates, provided together with the GRIM geopotential coefficients, are realistic. Received: 20 February 2001 / Accepted: 24 October 2001  相似文献   
572.
573.
  The Western Alps are among the best studied collisional belts with both detailed structural mapping and also crustal geophysical investigations such as the ECORS and EGT seismic profile. By contrast, the present-day kinematics of the belt is still largely unknown due to small relative motions and the insufficient accuracy of the triangulation data. As a consequence, several tectonic problems still remain to be solved, such as the amount of N–S convergence in the Occidental Alps, the repartition of the deformation between the Alpine tectonic units, and the relation between deformation and rotation across the Alpine arc. In order to address these problems, the GPS ALPES group, made up of French, Swiss and Italian research organizations, has achieved the first large-scale GPS surveys of the Western Alps. More than 60 sites were surveyed in 1993 and 1998 with a minimum observation of 3 days at each site. GPS data processing has been done by three independent teams using different software. The different solutions have horizontal repeatabilities (N–E) of 4–7 mm in 1993 and 2–3 mm in 1998 and compare at the 3–5-mm level in position and 2-mm/yr level in velocity. A comparison of 1993 and 1998 coordinates shows that residual velocities of the GPS marks are generally smaller than 2 mm/yr, precluding a detailed tectonic interpretation of the differential motions. However, these data seem to suggest that the N–S compression of the Western Alps is quite mild (less than 2 mm/yr) compared to the global convergence between the African and Eurasian plate (6 mm/yr). This implies that the shortening must be accomodated elsewhere by the deformation of the Maghrebids and/or by rotations of Mediterranean microplates. Also, E–W velocity components analysis supports the idea that E–W extension exists, as already suggested by recent structural and seismotectonic data interpretation. Received: 27 November 2000 / Accepted: 17 September 2001  相似文献   
574.
575.
IAG Newsletter     
  相似文献   
576.
We examine the relationship between source position stability and astrophysical properties of radio-loud quasars making up the International Celestial Reference Frame (ICRF2). Understanding this relationship is important for improving quasar selection and analysis strategies, and therefore reference frame stability. We construct flux density time series, known as light curves, for 95 of the most frequently observed ICRF2 quasars at both the 2.3 and 8.4 GHz geodetic very long baseline interferometry (VLBI) observing bands. Because the appearance of new quasar components corresponds to an increase in quasar flux density, these light curves alert us about potential changes in source structure before they appear in VLBI images. We test how source position stability depends on three astrophysical parameters: (1) flux density variability at X band; (2) time lag between flares in S and X bands; (3) spectral index root-mean-square (rms), defined as the variability in the ratio between S and X band flux densities. We find that the time lag between S and X band light curves provides a good indicator of position stability: sources with time lags $<$ 0.06 years are significantly more stable ( $>$ 20 % improvement in weighted rms) than sources with larger time lags. A similar improvement is obtained by observing sources with low $(<$ 0.12) spectral index variability. On the other hand, there is no strong dependence of source position stability on flux density variability in a single frequency band. These findings can be understood by interpreting the time lag between S and X band light curves as a measure of the size of the source structure. Monitoring of source flux density at multiple frequencies therefore appears to provide a useful probe of quasar structure on scales important to geodesy. The observed astrometric position of the brightest quasar component (the core) is known to depend on observing frequency. We show how multi-frequency flux density monitoring may allow the dependence on frequency of the relative core positions along the jet to be elucidated. Knowledge of the position–frequency relation has important implications for current and future geodetic VLBI programs, as well as the alignment between the radio and optical celestial reference frames.  相似文献   
577.
Results from processing FORMOSAT-3/COSMIC radio occultations (RO) with the new GPS L2C signal acquired both in phase locked loop (PLL) and open loop (OL) modes are presented. Analysis of L2P, L2C, and L1CA signals acquired in PLL mode shows that in the presence of strong ionospheric scintillation not only L2P tracking, but also L1CA tracking often fails, while L2C tracking is most stable. The use of L2C improves current RO processing in the neutral atmosphere mainly by increasing the number of processed occultations (due to significant reduction in the number of L2 tracking failures) and marginally by a reduction in noise in statistics. The latter is due to the combination of reduced L2C noise (compared to L2P) and increased L1CA noise in those occultations where L2P would have failed. This result suggests application of OL tracking for L1CA and L2C signals throughout an entire occultation to optimally acquire RO data. Two methods of concurrent processing of L1CA and L2C RO signals are considered. Based on testing of individual occultations, these methods allow: (1) reduction in uncertainty of bending angles retrieved by wave optics in the lower troposphere and (2) reduction in small-scale residual errors of the ionospheric correction in the stratosphere.  相似文献   
578.
We investigate daily and sub-daily non-tidal oceanic and atmospheric loading (NTOAL) in the Australian region and put an upper bound on potential site motion examining the effects of tropical cyclone Yasi that crossed the Australian coast in January/February 2011. The dynamic nature of the ocean is important, particularly for northern Australia where the long-term scatter due to daily and sub-daily oceanic changes increases by 20–55 % compared to that estimated using the inverted barometer (IB) assumption. Correcting the daily Global Positioning System (GPS) time series for NTOAL employing either a dynamic ocean model or the IB assumption leads to a reduction of up to 52 % in the weighted scatter of daily coordinate estimates. Differences between the approaches are obscured by seasonal variations in the GPS precision along the northern coast. Two compensating signals during the cyclone require modelling at high spatial and temporal resolution: uplift induced by the atmospheric depression, and subsidence induced by storm surge. The latter dominates ( \(>\) 135 %) the combined net effect that reaches a maximum of 14 mm, and 10 mm near the closest GPS site TOW2. Here, 96 % of the displacement is reached within 15 h due to the rapid transit of cyclones and the quasi-linear nature of the coastline. Consequently, estimating sub-daily NTOAL is necessary to properly account for such a signal that can be 3.5 times larger than its daily-averaged value. We were unable to detect the deformation signal in 2-hourly GPS processing and show that seasonal noise in the Austral summer dominates and precludes GPS detection of the cyclone-related subsidence.  相似文献   
579.
A. El-Mowafy 《GPS Solutions》2014,18(4):553-561
A method is presented for real-time validation of GNSS measurements of a single receiver, where data from each satellite are independently processed. A geometry-free observation model is used with a reparameterized form of the unknowns to overcome rank deficiency of the model. The ionosphere error and non-constant biases such as multipath are assumed changing relatively smoothly as a function of time. Data validation and detection of errors are based on statistical testing of the observation residuals using the detection–identification–adaptation approach. The method is applicable to any GNSS with any number of frequencies. The performance of validation method was evaluated using multi-frequency data from three GNSS (GPS, GLONASS, and Galileo) that span 3 days in a test site at Curtin University, Australia. Performance of the method in detection and identification of outliers in code observations, and detection of cycle slips in phase data were examined. Results show that the success rate vary according to precision of observations and their number as well as size of the errors. The method capability is demonstrated when processing four IOV Galileo satellites in a single-point-positioning mode and in another test by comparing its performance with Bernese software in detection of cycle slips in precise point-positioning processing using GPS data.  相似文献   
580.
Shoreline changes along the south Gujarat coast has been analyzed by using USGS Digital Shoreline Analysis System (DSAS) version 4.3. Multi-temporal satellite images pertaining to 1972, 1990, 2001 and 2011 were used to extract the shoreline. The High water line (HTL) is considered as shoreline and visual interpretation of satellite imageries has been carried out to demarcate the HTL based on various geomorphology and land use & land cover features. The present study used the Linear Regression Method (LRR) to calculate shoreline change rate. Based on the rate of shoreline changes, the coastal stretches of study area has been classified in to high erosion, low erosion, stable, low accretion and high accretion coast. The study found that about 69.31 % of the South Gujarat coast is eroding, about 18.40 % of coast is stable and remaining 12.28 % of the coast is accreting in nature. Field investigation was carried out which confirmed the coastal erosion/accretion derived from the analysis. The high erosion area are mostly found along the Umergaon (near Fansa, Maroli, Nargol, Varili river mouth, Umergaon light house) and Pardi (Kolak, Udwara)Taluka in Valsad district. Stable coastal length of the study area is 21.59 km and mostly found in Nani Dandi and near Onjal. High accretion (3.70 %) was only found near Hajira and low accretion (8.58 %) are distributed the study area. The main causes of coastal erosion of the study area were the strong tidal currents accompanied by wave action and reduced the sediment load of the river.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号