首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26345篇
  免费   504篇
  国内免费   316篇
测绘学   732篇
大气科学   1860篇
地球物理   5144篇
地质学   9248篇
海洋学   2369篇
天文学   6415篇
综合类   54篇
自然地理   1343篇
  2022年   117篇
  2021年   224篇
  2020年   257篇
  2019年   322篇
  2018年   656篇
  2017年   643篇
  2016年   786篇
  2015年   455篇
  2014年   766篇
  2013年   1405篇
  2012年   830篇
  2011年   1109篇
  2010年   1019篇
  2009年   1319篇
  2008年   1175篇
  2007年   1193篇
  2006年   1155篇
  2005年   861篇
  2004年   856篇
  2003年   782篇
  2002年   742篇
  2001年   632篇
  2000年   651篇
  1999年   568篇
  1998年   559篇
  1997年   533篇
  1996年   407篇
  1995年   402篇
  1994年   423篇
  1993年   319篇
  1992年   318篇
  1991年   267篇
  1990年   313篇
  1989年   279篇
  1988年   255篇
  1987年   283篇
  1986年   239篇
  1985年   321篇
  1984年   342篇
  1983年   335篇
  1982年   316篇
  1981年   252篇
  1980年   271篇
  1979年   222篇
  1978年   208篇
  1977年   219篇
  1976年   180篇
  1975年   196篇
  1974年   180篇
  1973年   171篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
981.
Incipient charnockites have been widely used as evidence for the infiltration of CO2‐rich fluids driving dehydration of the lower crust. Rocks exposed at Kakkod quarry in the Trivandrum Block of southern India allow for a thorough investigation of the metamorphic evolution by preserving not only orthopyroxene‐bearing charnockite patches in a host garnet–biotite felsic gneiss, but also layers of garnet–sillimanite metapelite gneiss. Thermodynamic phase equilibria modelling of all three bulk compositions indicates consistent peak‐metamorphic conditions of 830–925 °C and 6–9 kbar with retrograde evolution involving suprasolidus decompression at high temperature. These models suggest that orthopyroxene was most likely stabilized close to the metamorphic peak as a result of small compositional heterogeneities in the host garnet–biotite gneiss. There is insufficient evidence to determine whether the heterogeneities were inherited from the protolith or introduced during syn‐metamorphic fluid flow. U–Pb geochronology of monazite and zircon from all three rock types constrains the peak of metamorphism and orthopyroxene growth to have occurred between the onset of high‐grade metamorphism at c. 590 Ma and the onset of melt crystallization at c. 540 Ma. The majority of metamorphic zircon growth occurred during protracted melt crystallization between c. 540 and 510 Ma. Melt crystallization was followed by the influx of aqueous, alkali‐rich fluids likely derived from melts crystallizing at depth. This late fluid flow led to retrogression of orthopyroxene, the observed outcrop pattern and to the textural and isotopic modification of monazite grains at c. 525–490 Ma.  相似文献   
982.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
983.
984.
985.
986.
In this study, the dispersal of wastes from offshore fish farms was evaluated by analyzing nitrogen stable isotope ratios (δ15N) in macroalgae incubated in the water column at sites located at an increasing distance from the fish cages. Bioassays were performed at three fish farms situated in separate localities with different nutritional conditions (Canary Islands, Murcia and Catalonia) and varying in size, species of fish reared and annual production. Macroalgal bioassays were carried out in two different directions (DI and DII) and they were replicated at each distance in order to evaluate the effect of small-scale variability on the spatial extent of fish farm wastes. The results obtained with δ15N contribute to a better understanding of the application of nitrogen stable isotopes ratios in macroalgae as an effective bioindicator for tracing the dispersion of offshore fish farm wastes, and demonstrate that fish farm wastes can be traced even over distances of some km from the pollution source. In the Canary Islands, the maximum distance obtained for detection of fish farm wastes was between 450 and 700 m. Of the three installations studied, Murcia presented the greatest distance for detection of fish farm waste influence, ranging from between 1550 and 2450 m, whilst in Catalonia this distance was less than 120 m. In Catalonia, the results were masked by the influence of other sources of nitrogen, and thus fish farm wastes were detected at more reduced distances than expected. These results confirm that fish farm wastes can be traced using the nitrogen stable isotope ratios of macroalgae and that this method can also be useful for identifying areas of potential risk to some sensitive ecosystems, and as an early signal that changes in the community structure might occur.  相似文献   
987.
Thanks to its simple division into agricultural and forestry land use, the Corbeira catchment (Galicia, Spain) is used as a case study to build a predictive model using hydrogeochemical signatures. Stream data acquired under recessional flow conditions over a one year period were obtained from a sampling station near the downstream end of the catchment, and using principal component analysis, it is shown that some of the analytical parameters are covariant, and some are negatively correlated. These findings support inferences about the pathways of rainfall in the catchment. Specific signatures may be associated with the dominant hydrological source, either surface runoff or subsurface waters: additionally, the dominant land use in that part of the catchment, where the flow originated, can also be predicted. The dominant runoff shows a strong covariance between suspended solids (SS) and particulate phosphorus (PP), with a clear negative correlation with pH. Dissolved organic carbon (DOC) data are associated with this covariant set when these compounds are available in the soils in question. Dissolved phosphorus, total organic nitrogen and dissolved nitrates are also associated with the same covariant set when the runoff flows through areas of extensive agricultural use. The SS ? PP covariance is less significant at lower flows. Typical base flow regimes show a significant covariance between salinity and pH, with a marked negative correlation with SS ? PP set, confirming the dominance of subsurface waters in the baseflow, as expected. Seasonally divergent DOC ? SS behaviour proves to be a useful tracer for rainfall regimes. The DOC trend shows a sinusoidal annual variation in amplitude, determined by the rainfall regime. As a result, flow from the catchment is dominated by surface water whenever there is synchronicity between the peaks of DOC and SS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
988.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
989.
Particles eroded from hillslopes and exported to rivers are recognized to be composite particles of high internal complexity. Their architecture and composition are known to influence their transport behaviour within the water column relative to discrete particles. To‐date, hillslope erosion studies consider aggregates to be stable once they are detached from the soil matrix. However, lowland rivers and estuaries studies often suggest that particle structure and dynamics are controlled by flocculation within the water column. In order to improve the understanding of particle dynamics along the continuum from hillslopes to the lowland river environment, soil particle behaviour was tested under controlled laboratory conditions. Seven flume erosion and deposition experiments, designed to simulate a natural erosive event, and five shear cell experiments were performed using three contrasting materials: two of them were poorly developed and as such can not be considered as soils, whilst the third one was a calcareous brown soil. These experiments revealed that soil aggregates were prone to disaggregation within the water column and that flocculation may affect their size distribution during transport. Large differences in effective particle size were found between soil types during the rising limb of the bed shear stress sequence. Indeed, at the maximum applied bed shear stress, the aggregated particles median diameter was found to be three times larger for the well‐developed soil than for the two others. Differences were smaller in the falling limb, suggesting that soil aggregates underwent structural changes. However, characterization of particles strength parameters showed that these changes did not fully turn soil aggregates into flocs, but rather into hybrid soil aggregate–floc particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
990.
Many of the commonly used analytical techniques for assessing the properties of fluvial suspended particulate matter (SPM) are neither cost effective nor time efficient, making them prohibitive to long‐term high‐resolution monitoring. We present an in‐depth methodology utilizing two types of spectroscopy which, when combined with automatic water samplers, can generate accurate, high‐temporal resolution SPM geochemistry data, inexpensively and semi‐destructively, directly from sediment covered filter papers. A combined X‐ray fluorescence spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy approach is developed to estimate concentrations for a range of elements (Al, Ca, Ce, Fe, K, Mg, Mn, Na, P, Si, Ti) and compounds (organic carbon, Aldithionate, Aloxalate, Fedithionate, and Feoxalate) within SPM trapped on quartz fibre filters at masses as low as 3 mg. Calibration models with small prediction errors are derived, along with mass correction factor models to account for variations in retained SPM mass. Spectral pre‐processing methods are shown to enhance the reproducibility of results for some compounds, and the importance of filter paper selection and homogeneous sample preparation in minimizing spectral interference is emphasized. The geochemical signal from sediment covered filter papers is demonstrated to be time stable enabling samples to be stored for several weeks prior to analysis. Example results obtained during a heavy precipitation event in October 2012 demonstrate the methodology presented here has considerable potential to be utilized for high‐resolution monitoring of SPM geochemistry under a range of in‐stream hydrological conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号